![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1𝑜 ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 7605 | . 2 ⊢ 1𝑜 = suc ∅ | |
2 | peano1 7127 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 7128 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2726 | 1 ⊢ 1𝑜 ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ∅c0 3948 suc csuc 5763 ωcom 7107 1𝑜c1o 7598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-om 7108 df-1o 7605 |
This theorem is referenced by: 2onn 7765 oaabs2 7770 omabs 7772 nnm2 7774 nnneo 7776 nneob 7777 snfi 8079 snnen2o 8190 1sdom2 8200 1sdom 8204 unxpdom2 8209 en1eqsn 8231 en2 8237 pwfi 8302 wofib 8491 oancom 8586 cnfcom3clem 8640 card1 8832 pm54.43lem 8863 en2eleq 8869 en2other2 8870 infxpenlem 8874 infxpenc2lem1 8880 infmap2 9078 sdom2en01 9162 cfpwsdom 9444 canthp1lem2 9513 gchcda1 9516 pwxpndom2 9525 pwcdandom 9527 1pi 9743 1lt2pi 9765 indpi 9767 hash2 13231 hash1snb 13245 setcepi 16785 f1otrspeq 17913 pmtrf 17921 pmtrmvd 17922 pmtrfinv 17927 lt6abl 18342 isnzr2 19311 vr1cl 19635 ply1coe 19714 frgpcyg 19970 isppw 24885 bnj906 31126 finxpreclem1 33356 finxpreclem2 33357 finxp1o 33359 finxpreclem4 33361 finxp2o 33366 |
Copyright terms: Public domain | W3C validator |