![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: 1𝑜 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) |
Ref | Expression |
---|---|
1oex | ⊢ 1𝑜 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7720 | . 2 ⊢ 1𝑜 ∈ On | |
2 | 1 | elexi 3365 | 1 ⊢ 1𝑜 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 Vcvv 3351 Oncon0 5866 1𝑜c1o 7706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-tr 4887 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-ord 5869 df-on 5870 df-suc 5872 df-1o 7713 |
This theorem is referenced by: oev 7748 oe0 7756 oev2 7757 oneo 7815 endisj 8203 map2xp 8286 sdom1 8316 djuss 8946 1stinr 8955 2ndinr 8956 pm54.43 9026 cda1dif 9200 infcda1 9217 cfsuc 9281 isfin4-3 9339 dcomex 9471 pwcfsdom 9607 pwxpndom2 9689 sadcf 15383 sadcp1 15385 xpsc0 16428 xpsc1 16429 xpsfrnel 16431 xpsfrnel2 16433 xpsle 16449 efgi1 18341 frgpuptinv 18391 dmdprdpr 18656 dprdpr 18657 coe1fval3 19793 00ply1bas 19825 ply1plusgfvi 19827 coe1z 19848 coe1tm 19858 xpstopnlem1 21833 xpstopnlem2 21835 xpsdsval 22406 nofv 32147 noxp1o 32153 noextendlt 32159 bdayfo 32165 nosep1o 32169 nosepdmlem 32170 nolt02o 32182 nosupbnd1lem5 32195 nosupbnd2lem1 32198 noetalem1 32200 noetalem3 32202 noetalem4 32203 rankeq1o 32615 bj-2ex 33270 bj-pr2val 33337 bj-2upln1upl 33343 pw2f1ocnv 38130 clsk3nimkb 38864 clsk1indlem4 38868 clsk1indlem1 38869 |
Copyright terms: Public domain | W3C validator |