![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version |
Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
1lt3 | ⊢ 1 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 11357 | . 2 ⊢ 1 < 2 | |
2 | 2lt3 11358 | . 2 ⊢ 2 < 3 | |
3 | 1re 10202 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 11253 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 3re 11257 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 3, 4, 5 | lttri 10326 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
7 | 1, 2, 6 | mp2an 710 | 1 ⊢ 1 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4792 1c1 10100 < clt 10237 2c2 11233 3c3 11234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-2 11242 df-3 11243 |
This theorem is referenced by: 1le3 11407 fztpval 12566 expnass 13135 s4fv1 13812 f1oun2prg 13833 sin01gt0 15090 rpnnen2lem3 15115 rpnnen2lem9 15121 3prm 15579 6nprm 15989 7prm 15990 9nprm 15992 13prm 15996 19prm 15998 prmlem2 16000 37prm 16001 43prm 16002 139prm 16004 163prm 16005 631prm 16007 basendxnmulrndx 16172 ressmulr 16179 opprbas 18800 matbas 20392 log2cnv 24841 cxploglim2 24875 2lgslem3 25299 dchrvmasumlem2 25357 pntibndlem1 25448 tgcgr4 25596 axlowdimlem16 26007 usgrexmpldifpr 26320 upgr3v3e3cycl 27303 upgr4cycl4dv4e 27308 konigsberglem2 27376 konigsberglem3 27377 konigsberglem5 27379 frgrogt3nreg 27536 ex-dif 27562 ex-pss 27567 ex-res 27580 rabren3dioph 37850 jm2.23 38034 stoweidlem34 40723 stoweidlem42 40731 smfmullem4 41476 fmtno4prmfac193 41964 3ndvds4 41989 127prm 41994 nnsum4primesodd 42163 nnsum4primesoddALTV 42164 |
Copyright terms: Public domain | W3C validator |