![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt2nq | Structured version Visualization version GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1lt2nq | ⊢ 1Q <Q (1Q +Q 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2pi 9928 | . . . . . 6 ⊢ 1𝑜 <N (1𝑜 +N 1𝑜) | |
2 | 1pi 9906 | . . . . . . 7 ⊢ 1𝑜 ∈ N | |
3 | mulidpi 9909 | . . . . . . 7 ⊢ (1𝑜 ∈ N → (1𝑜 ·N 1𝑜) = 1𝑜) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1𝑜 ·N 1𝑜) = 1𝑜 |
5 | addclpi 9915 | . . . . . . . 8 ⊢ ((1𝑜 ∈ N ∧ 1𝑜 ∈ N) → (1𝑜 +N 1𝑜) ∈ N) | |
6 | 2, 2, 5 | mp2an 664 | . . . . . . 7 ⊢ (1𝑜 +N 1𝑜) ∈ N |
7 | mulidpi 9909 | . . . . . . 7 ⊢ ((1𝑜 +N 1𝑜) ∈ N → ((1𝑜 +N 1𝑜) ·N 1𝑜) = (1𝑜 +N 1𝑜)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ((1𝑜 +N 1𝑜) ·N 1𝑜) = (1𝑜 +N 1𝑜) |
9 | 1, 4, 8 | 3brtr4i 4814 | . . . . 5 ⊢ (1𝑜 ·N 1𝑜) <N ((1𝑜 +N 1𝑜) ·N 1𝑜) |
10 | ordpipq 9965 | . . . . 5 ⊢ (〈1𝑜, 1𝑜〉 <pQ 〈(1𝑜 +N 1𝑜), 1𝑜〉 ↔ (1𝑜 ·N 1𝑜) <N ((1𝑜 +N 1𝑜) ·N 1𝑜)) | |
11 | 9, 10 | mpbir 221 | . . . 4 ⊢ 〈1𝑜, 1𝑜〉 <pQ 〈(1𝑜 +N 1𝑜), 1𝑜〉 |
12 | df-1nq 9939 | . . . 4 ⊢ 1Q = 〈1𝑜, 1𝑜〉 | |
13 | 12, 12 | oveq12i 6804 | . . . . 5 ⊢ (1Q +pQ 1Q) = (〈1𝑜, 1𝑜〉 +pQ 〈1𝑜, 1𝑜〉) |
14 | addpipq 9960 | . . . . . 6 ⊢ (((1𝑜 ∈ N ∧ 1𝑜 ∈ N) ∧ (1𝑜 ∈ N ∧ 1𝑜 ∈ N)) → (〈1𝑜, 1𝑜〉 +pQ 〈1𝑜, 1𝑜〉) = 〈((1𝑜 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉) | |
15 | 2, 2, 2, 2, 14 | mp4an 665 | . . . . 5 ⊢ (〈1𝑜, 1𝑜〉 +pQ 〈1𝑜, 1𝑜〉) = 〈((1𝑜 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉 |
16 | 4, 4 | oveq12i 6804 | . . . . . 6 ⊢ ((1𝑜 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)) = (1𝑜 +N 1𝑜) |
17 | 16, 4 | opeq12i 4542 | . . . . 5 ⊢ 〈((1𝑜 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉 = 〈(1𝑜 +N 1𝑜), 1𝑜〉 |
18 | 13, 15, 17 | 3eqtri 2796 | . . . 4 ⊢ (1Q +pQ 1Q) = 〈(1𝑜 +N 1𝑜), 1𝑜〉 |
19 | 11, 12, 18 | 3brtr4i 4814 | . . 3 ⊢ 1Q <pQ (1Q +pQ 1Q) |
20 | lterpq 9993 | . . 3 ⊢ (1Q <pQ (1Q +pQ 1Q) ↔ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q))) | |
21 | 19, 20 | mpbi 220 | . 2 ⊢ ([Q]‘1Q) <Q ([Q]‘(1Q +pQ 1Q)) |
22 | 1nq 9951 | . . . 4 ⊢ 1Q ∈ Q | |
23 | nqerid 9956 | . . . 4 ⊢ (1Q ∈ Q → ([Q]‘1Q) = 1Q) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ ([Q]‘1Q) = 1Q |
25 | 24 | eqcomi 2779 | . 2 ⊢ 1Q = ([Q]‘1Q) |
26 | addpqnq 9961 | . . 3 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q))) | |
27 | 22, 22, 26 | mp2an 664 | . 2 ⊢ (1Q +Q 1Q) = ([Q]‘(1Q +pQ 1Q)) |
28 | 21, 25, 27 | 3brtr4i 4814 | 1 ⊢ 1Q <Q (1Q +Q 1Q) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2144 〈cop 4320 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 1𝑜c1o 7705 Ncnpi 9867 +N cpli 9868 ·N cmi 9869 <N clti 9870 +pQ cplpq 9871 <pQ cltpq 9873 Qcnq 9875 1Qc1q 9876 [Q]cerq 9877 +Q cplq 9878 <Q cltq 9881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-omul 7717 df-er 7895 df-ni 9895 df-pli 9896 df-mi 9897 df-lti 9898 df-plpq 9931 df-ltpq 9933 df-enq 9934 df-nq 9935 df-erq 9936 df-plq 9937 df-1nq 9939 df-ltnq 9941 |
This theorem is referenced by: ltaddnq 9997 |
Copyright terms: Public domain | W3C validator |