![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10251 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 10774 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4804 1c1 10149 ≤ cle 10287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-mulcl 10210 ax-mulrcl 10211 ax-i2m1 10216 ax-1ne0 10217 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 |
This theorem is referenced by: nnge1 11258 1elunit 12504 fldiv4p1lem1div2 12850 expge1 13111 leexp1a 13133 bernneq 13204 faclbnd3 13293 facubnd 13301 hashsnle1 13417 wrdlen1 13550 wrdl1exs1 13604 fprodge1 14945 cos1bnd 15136 sincos1sgn 15142 eirrlem 15151 xrhmeo 22966 pcoval2 23036 pige3 24489 cxplea 24662 cxple2a 24665 cxpaddlelem 24712 abscxpbnd 24714 mule1 25094 sqff1o 25128 logfacbnd3 25168 logexprlim 25170 dchrabs2 25207 bposlem5 25233 zabsle1 25241 lgslem2 25243 lgsfcl2 25248 lgseisen 25324 dchrisum0flblem1 25417 log2sumbnd 25453 clwwlknon1le1 27270 nmopun 29203 branmfn 29294 stge1i 29427 dstfrvunirn 30866 subfaclim 31498 jm2.17a 38047 jm2.17b 38048 fmuldfeq 40336 stoweidlem3 40741 stoweidlem18 40756 |
Copyright terms: Public domain | W3C validator |