MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idsr Structured version   Visualization version   GIF version

Theorem 1idsr 10121
Description: 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1idsr (𝐴R → (𝐴 ·R 1R) = 𝐴)

Proof of Theorem 1idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10080 . 2 R = ((P × P) / ~R )
2 oveq1 6800 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = (𝐴 ·R 1R))
3 id 22 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2786 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 ·R 1R) = 𝐴))
5 df-1r 10085 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
65oveq2i 6804 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R )
7 1pr 10039 . . . . . 6 1PP
8 addclpr 10042 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
97, 7, 8mp2an 672 . . . . 5 (1P +P 1P) ∈ P
10 mulsrpr 10099 . . . . 5 (((𝑥P𝑦P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
119, 7, 10mpanr12 685 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
12 distrpr 10052 . . . . . . . 8 (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P))
13 1idpr 10053 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) = 𝑥)
1413oveq1d 6808 . . . . . . . 8 (𝑥P → ((𝑥 ·P 1P) +P (𝑥 ·P 1P)) = (𝑥 +P (𝑥 ·P 1P)))
1512, 14syl5req 2818 . . . . . . 7 (𝑥P → (𝑥 +P (𝑥 ·P 1P)) = (𝑥 ·P (1P +P 1P)))
16 distrpr 10052 . . . . . . . 8 (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P))
17 1idpr 10053 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) = 𝑦)
1817oveq1d 6808 . . . . . . . 8 (𝑦P → ((𝑦 ·P 1P) +P (𝑦 ·P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
1916, 18syl5eq 2817 . . . . . . 7 (𝑦P → (𝑦 ·P (1P +P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2015, 19oveqan12d 6812 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))))
21 addasspr 10046 . . . . . 6 ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))))
22 ovex 6823 . . . . . . 7 (𝑥 ·P (1P +P 1P)) ∈ V
23 vex 3354 . . . . . . 7 𝑦 ∈ V
24 ovex 6823 . . . . . . 7 (𝑦 ·P 1P) ∈ V
25 addcompr 10045 . . . . . . 7 (𝑧 +P 𝑤) = (𝑤 +P 𝑧)
26 addasspr 10046 . . . . . . 7 ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))
2722, 23, 24, 25, 26caov12 7009 . . . . . 6 ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))
2820, 21, 273eqtr3g 2828 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
29 mulclpr 10044 . . . . . . . . . 10 ((𝑥P ∧ (1P +P 1P) ∈ P) → (𝑥 ·P (1P +P 1P)) ∈ P)
309, 29mpan2 671 . . . . . . . . 9 (𝑥P → (𝑥 ·P (1P +P 1P)) ∈ P)
31 mulclpr 10044 . . . . . . . . . 10 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
327, 31mpan2 671 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
33 addclpr 10042 . . . . . . . . 9 (((𝑥 ·P (1P +P 1P)) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
3430, 32, 33syl2an 583 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
35 mulclpr 10044 . . . . . . . . . 10 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
367, 35mpan2 671 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
37 mulclpr 10044 . . . . . . . . . 10 ((𝑦P ∧ (1P +P 1P) ∈ P) → (𝑦 ·P (1P +P 1P)) ∈ P)
389, 37mpan2 671 . . . . . . . . 9 (𝑦P → (𝑦 ·P (1P +P 1P)) ∈ P)
39 addclpr 10042 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4036, 38, 39syl2an 583 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4134, 40anim12i 600 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P))
42 enreceq 10089 . . . . . . 7 (((𝑥P𝑦P) ∧ (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
4341, 42syldan 579 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
4443anidms 556 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
4528, 44mpbird 247 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
4611, 45eqtr4d 2808 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
476, 46syl5eq 2817 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R )
481, 4, 47ecoptocl 7989 1 (𝐴R → (𝐴 ·R 1R) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  cop 4322  (class class class)co 6793  [cec 7894  Pcnp 9883  1Pc1p 9884   +P cpp 9885   ·P cmp 9886   ~R cer 9888  Rcnr 9889  1Rc1r 9891   ·R cmr 9894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-omul 7718  df-er 7896  df-ec 7898  df-qs 7902  df-ni 9896  df-pli 9897  df-mi 9898  df-lti 9899  df-plpq 9932  df-mpq 9933  df-ltpq 9934  df-enq 9935  df-nq 9936  df-erq 9937  df-plq 9938  df-mq 9939  df-1nq 9940  df-rq 9941  df-ltnq 9942  df-np 10005  df-1p 10006  df-plp 10007  df-mp 10008  df-ltp 10009  df-enr 10079  df-nr 10080  df-mr 10082  df-1r 10085
This theorem is referenced by:  pn0sr  10124  sqgt0sr  10129  axi2m1  10182  ax1rid  10184  axcnre  10187
  Copyright terms: Public domain W3C validator