![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1hevtxdg0 | Structured version Visualization version GIF version |
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 is 0 if 𝐷 is not incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) |
Ref | Expression |
---|---|
1hevtxdg0.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
1hevtxdg0.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1hevtxdg0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1hevtxdg0.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
1hevtxdg0.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
1hevtxdg0.n | ⊢ (𝜑 → 𝐷 ∉ 𝐸) |
Ref | Expression |
---|---|
1hevtxdg0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hevtxdg0.n | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∉ 𝐸) | |
2 | df-nel 3028 | . . . . . . 7 ⊢ (𝐷 ∉ 𝐸 ↔ ¬ 𝐷 ∈ 𝐸) | |
3 | 1, 2 | sylib 208 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐷 ∈ 𝐸) |
4 | 1hevtxdg0.i | . . . . . . . 8 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
5 | 4 | fveq1d 6346 | . . . . . . 7 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({〈𝐴, 𝐸〉}‘𝐴)) |
6 | 1hevtxdg0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 1hevtxdg0.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
8 | fvsng 6603 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) | |
9 | 6, 7, 8 | syl2anc 696 | . . . . . . 7 ⊢ (𝜑 → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) |
10 | 5, 9 | eqtrd 2786 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸) |
11 | 3, 10 | neleqtrrd 2853 | . . . . 5 ⊢ (𝜑 → ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)) |
12 | fveq2 6344 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴)) | |
13 | 12 | eleq2d 2817 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
14 | 13 | notbid 307 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
15 | 14 | ralsng 4354 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
16 | 6, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) |
17 | 11, 16 | mpbird 247 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
18 | 4 | dmeqd 5473 | . . . . . 6 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, 𝐸〉}) |
19 | dmsnopg 5757 | . . . . . . 7 ⊢ (𝐸 ∈ 𝑌 → dom {〈𝐴, 𝐸〉} = {𝐴}) | |
20 | 7, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, 𝐸〉} = {𝐴}) |
21 | 18, 20 | eqtrd 2786 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
22 | 21 | raleqdv 3275 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∀𝑥 ∈ {𝐴} ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
23 | 17, 22 | mpbird 247 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
24 | ralnex 3122 | . . 3 ⊢ (∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) | |
25 | 23, 24 | sylib 208 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥)) |
26 | 1hevtxdg0.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
27 | 1hevtxdg0.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
28 | 27 | eleq2d 2817 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (Vtx‘𝐺) ↔ 𝐷 ∈ 𝑉)) |
29 | 26, 28 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (Vtx‘𝐺)) |
30 | eqid 2752 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
31 | eqid 2752 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
32 | eqid 2752 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
33 | 30, 31, 32 | vtxd0nedgb 26586 | . . 3 ⊢ (𝐷 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
34 | 29, 33 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐷) = 0 ↔ ¬ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐷 ∈ ((iEdg‘𝐺)‘𝑥))) |
35 | 25, 34 | mpbird 247 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1624 ∈ wcel 2131 ∉ wnel 3027 ∀wral 3042 ∃wrex 3043 {csn 4313 〈cop 4319 dom cdm 5258 ‘cfv 6041 0cc0 10120 Vtxcvtx 26065 iEdgciedg 26066 VtxDegcvtxdg 26563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-xnn0 11548 df-z 11562 df-uz 11872 df-xadd 12132 df-fz 12512 df-hash 13304 df-vtxdg 26564 |
This theorem is referenced by: p1evtxdeq 26611 eupth2lem3lem6 27377 |
Copyright terms: Public domain | W3C validator |