MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg0 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg0 26638
Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg0.d (𝜑𝐷𝑉)
1egrvtxdg0.n (𝜑𝐶𝐷)
1egrvtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
Assertion
Ref Expression
1egrvtxdg0 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)

Proof of Theorem 1egrvtxdg0
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
21adantl 473 . . . 4 ((𝐵 = 𝐷𝜑) → (Vtx‘𝐺) = 𝑉)
3 1egrvtxdg1.a . . . . 5 (𝜑𝐴𝑋)
43adantl 473 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐴𝑋)
5 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
65adantl 473 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐵𝑉)
7 1egrvtxdg0.i . . . . . 6 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
87adantl 473 . . . . 5 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
9 preq2 4413 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵, 𝐷} = {𝐵, 𝐵})
109eqcoms 2768 . . . . . . . . 9 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵, 𝐵})
11 dfsn2 4334 . . . . . . . . 9 {𝐵} = {𝐵, 𝐵}
1210, 11syl6eqr 2812 . . . . . . . 8 (𝐵 = 𝐷 → {𝐵, 𝐷} = {𝐵})
1312adantr 472 . . . . . . 7 ((𝐵 = 𝐷𝜑) → {𝐵, 𝐷} = {𝐵})
1413opeq2d 4560 . . . . . 6 ((𝐵 = 𝐷𝜑) → ⟨𝐴, {𝐵, 𝐷}⟩ = ⟨𝐴, {𝐵}⟩)
1514sneqd 4333 . . . . 5 ((𝐵 = 𝐷𝜑) → {⟨𝐴, {𝐵, 𝐷}⟩} = {⟨𝐴, {𝐵}⟩})
168, 15eqtrd 2794 . . . 4 ((𝐵 = 𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵}⟩})
17 1egrvtxdg1.c . . . . . . 7 (𝜑𝐶𝑉)
18 1egrvtxdg1.n . . . . . . . 8 (𝜑𝐵𝐶)
1918necomd 2987 . . . . . . 7 (𝜑𝐶𝐵)
2017, 19jca 555 . . . . . 6 (𝜑 → (𝐶𝑉𝐶𝐵))
21 eldifsn 4462 . . . . . 6 (𝐶 ∈ (𝑉 ∖ {𝐵}) ↔ (𝐶𝑉𝐶𝐵))
2220, 21sylibr 224 . . . . 5 (𝜑𝐶 ∈ (𝑉 ∖ {𝐵}))
2322adantl 473 . . . 4 ((𝐵 = 𝐷𝜑) → 𝐶 ∈ (𝑉 ∖ {𝐵}))
242, 4, 6, 16, 231loopgrvd0 26631 . . 3 ((𝐵 = 𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
2524ex 449 . 2 (𝐵 = 𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
26 necom 2985 . . . . . . . . . 10 (𝐵𝐶𝐶𝐵)
27 df-ne 2933 . . . . . . . . . 10 (𝐶𝐵 ↔ ¬ 𝐶 = 𝐵)
2826, 27sylbb 209 . . . . . . . . 9 (𝐵𝐶 → ¬ 𝐶 = 𝐵)
2918, 28syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐵)
30 1egrvtxdg0.n . . . . . . . . 9 (𝜑𝐶𝐷)
3130neneqd 2937 . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐷)
3229, 31jca 555 . . . . . . 7 (𝜑 → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3332adantl 473 . . . . . 6 ((𝐵𝐷𝜑) → (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
34 ioran 512 . . . . . 6 (¬ (𝐶 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷))
3533, 34sylibr 224 . . . . 5 ((𝐵𝐷𝜑) → ¬ (𝐶 = 𝐵𝐶 = 𝐷))
36 edgval 26161 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
377rneqd 5508 . . . . . . . . . 10 (𝜑 → ran (iEdg‘𝐺) = ran {⟨𝐴, {𝐵, 𝐷}⟩})
38 rnsnopg 5773 . . . . . . . . . . 11 (𝐴𝑋 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
393, 38syl 17 . . . . . . . . . 10 (𝜑 → ran {⟨𝐴, {𝐵, 𝐷}⟩} = {{𝐵, 𝐷}})
4037, 39eqtrd 2794 . . . . . . . . 9 (𝜑 → ran (iEdg‘𝐺) = {{𝐵, 𝐷}})
4136, 40syl5eq 2806 . . . . . . . 8 (𝜑 → (Edg‘𝐺) = {{𝐵, 𝐷}})
4241adantl 473 . . . . . . 7 ((𝐵𝐷𝜑) → (Edg‘𝐺) = {{𝐵, 𝐷}})
4342rexeqdv 3284 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ ∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒))
44 prex 5058 . . . . . . 7 {𝐵, 𝐷} ∈ V
45 eleq2 2828 . . . . . . . 8 (𝑒 = {𝐵, 𝐷} → (𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
4645rexsng 4363 . . . . . . 7 ({𝐵, 𝐷} ∈ V → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
4744, 46mp1i 13 . . . . . 6 ((𝐵𝐷𝜑) → (∃𝑒 ∈ {{𝐵, 𝐷}}𝐶𝑒𝐶 ∈ {𝐵, 𝐷}))
48 elprg 4341 . . . . . . . 8 (𝐶𝑉 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
4917, 48syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5049adantl 473 . . . . . 6 ((𝐵𝐷𝜑) → (𝐶 ∈ {𝐵, 𝐷} ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5143, 47, 503bitrd 294 . . . . 5 ((𝐵𝐷𝜑) → (∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒 ↔ (𝐶 = 𝐵𝐶 = 𝐷)))
5235, 51mtbird 314 . . . 4 ((𝐵𝐷𝜑) → ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒)
53 eqid 2760 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
543adantl 473 . . . . . 6 ((𝐵𝐷𝜑) → 𝐴𝑋)
555, 1eleqtrrd 2842 . . . . . . 7 (𝜑𝐵 ∈ (Vtx‘𝐺))
5655adantl 473 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵 ∈ (Vtx‘𝐺))
57 1egrvtxdg0.d . . . . . . . 8 (𝜑𝐷𝑉)
5857, 1eleqtrrd 2842 . . . . . . 7 (𝜑𝐷 ∈ (Vtx‘𝐺))
5958adantl 473 . . . . . 6 ((𝐵𝐷𝜑) → 𝐷 ∈ (Vtx‘𝐺))
607adantl 473 . . . . . 6 ((𝐵𝐷𝜑) → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐷}⟩})
61 simpl 474 . . . . . 6 ((𝐵𝐷𝜑) → 𝐵𝐷)
6253, 54, 56, 59, 60, 61usgr1e 26357 . . . . 5 ((𝐵𝐷𝜑) → 𝐺 ∈ USGraph)
6317, 1eleqtrrd 2842 . . . . . 6 (𝜑𝐶 ∈ (Vtx‘𝐺))
6463adantl 473 . . . . 5 ((𝐵𝐷𝜑) → 𝐶 ∈ (Vtx‘𝐺))
65 eqid 2760 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
66 eqid 2760 . . . . . 6 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
6753, 65, 66vtxdusgr0edgnel 26622 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Vtx‘𝐺)) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
6862, 64, 67syl2anc 696 . . . 4 ((𝐵𝐷𝜑) → (((VtxDeg‘𝐺)‘𝐶) = 0 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺)𝐶𝑒))
6952, 68mpbird 247 . . 3 ((𝐵𝐷𝜑) → ((VtxDeg‘𝐺)‘𝐶) = 0)
7069ex 449 . 2 (𝐵𝐷 → (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0))
7125, 70pm2.61ine 3015 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  Vcvv 3340  cdif 3712  {csn 4321  {cpr 4323  cop 4327  ran crn 5267  cfv 6049  0cc0 10148  Vtxcvtx 26094  iEdgciedg 26095  Edgcedg 26159  USGraphcusgr 26264  VtxDegcvtxdg 26592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-xadd 12160  df-fz 12540  df-hash 13332  df-edg 26160  df-uhgr 26173  df-upgr 26197  df-uspgr 26265  df-usgr 26266  df-vtxdg 26593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator