Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratex Structured version   Visualization version   GIF version

Theorem 1cvratex 35231
Description: There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
1cvratex.b 𝐵 = (Base‘𝐾)
1cvratex.s < = (lt‘𝐾)
1cvratex.u 1 = (1.‘𝐾)
1cvratex.c 𝐶 = ( ⋖ ‘𝐾)
1cvratex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratex ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   < ,𝑝   1 ,𝑝   𝑋,𝑝

Proof of Theorem 1cvratex
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1128 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → 𝐾 ∈ HL)
2 1cvratex.b . . . . 5 𝐵 = (Base‘𝐾)
3 1cvratex.u . . . . 5 1 = (1.‘𝐾)
4 eqid 2748 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
5 1cvratex.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
6 1cvratex.a . . . . 5 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 61cvrco 35230 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘𝑋) ∈ 𝐴))
87biimp3a 1569 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
9 eqid 2748 . . . 4 (join‘𝐾) = (join‘𝐾)
109, 5, 62dim 35228 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
111, 8, 10syl2anc 696 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
12 simp11 1222 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 hlop 35121 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1412, 13syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ OP)
15 hllat 35122 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1612, 15syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Lat)
17 simp12 1223 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑋𝐵)
182, 4opoccl 34953 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1914, 17, 18syl2anc 696 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
20 simp2l 1218 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐴)
212, 6atbase 35048 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
2220, 21syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐵)
232, 9latjcl 17223 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑞𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
2416, 19, 22, 23syl3anc 1463 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
252, 4opoccl 34953 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
2614, 24, 25syl2anc 696 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
27 simp2r 1219 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐴)
282, 6atbase 35048 . . . . . . . . . . . . 13 (𝑟𝐴𝑟𝐵)
2927, 28syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐵)
302, 9latjcl 17223 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵𝑟𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
3116, 24, 29, 30syl3anc 1463 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
322, 4opoccl 34953 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
3314, 31, 32syl2anc 696 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
34 eqid 2748 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
35 eqid 2748 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
362, 34, 35op0le 34945 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
3714, 33, 36syl2anc 696 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
38 simp3r 1221 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
39 1cvratex.s . . . . . . . . . . . 12 < = (lt‘𝐾)
402, 39, 5cvrlt 35029 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
4112, 24, 31, 38, 40syl31anc 1466 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
422, 39, 4opltcon3b 34963 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4314, 24, 31, 42syl3anc 1463 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4441, 43mpbid 222 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
45 hlpos 35124 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4612, 45syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Poset)
472, 35op0cl 34943 . . . . . . . . . . 11 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
4814, 47syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ∈ 𝐵)
492, 34, 39plelttr 17144 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5046, 48, 33, 26, 49syl13anc 1465 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5137, 44, 50mp2and 717 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5239pltne 17134 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5312, 48, 26, 52syl3anc 1463 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5451, 53mpd 15 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5554necomd 2975 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾))
562, 34, 35, 6atle 35194 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾)) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5712, 26, 55, 56syl3anc 1463 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
58 simp3l 1220 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
592, 39, 5cvrlt 35029 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
6012, 19, 24, 58, 59syl31anc 1466 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
612, 39, 4opltcon3b 34963 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6214, 19, 24, 61syl3anc 1463 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6360, 62mpbid 222 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
642, 4opococ 34954 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6514, 17, 64syl2anc 696 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6663, 65breqtrd 4818 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
6766adantr 472 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
68 simpl11 1291 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
6968, 45syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
702, 6atbase 35048 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
7170adantl 473 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑝𝐵)
7226adantr 472 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
73 simpl12 1293 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑋𝐵)
742, 34, 39plelttr 17144 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑝𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7569, 71, 72, 73, 74syl13anc 1465 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7667, 75mpan2d 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → 𝑝 < 𝑋))
7776reximdva 3143 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ∃𝑝𝐴 𝑝 < 𝑋))
7857, 77mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝 < 𝑋)
79783exp 1112 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((𝑞𝐴𝑟𝐴) → ((((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋)))
8079rexlimdvv 3163 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → (∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋))
8111, 80mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920  wrex 3039   class class class wbr 4792  cfv 6037  (class class class)co 6801  Basecbs 16030  lecple 16121  occoc 16122  Posetcpo 17112  ltcplt 17113  joincjn 17116  0.cp0 17209  1.cp1 17210  Latclat 17217  OPcops 34931  ccvr 35021  Atomscatm 35022  HLchlt 35109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-preset 17100  df-poset 17118  df-plt 17130  df-lub 17146  df-glb 17147  df-join 17148  df-meet 17149  df-p0 17211  df-p1 17212  df-lat 17218  df-clat 17280  df-oposet 34935  df-ol 34937  df-oml 34938  df-covers 35025  df-ats 35026  df-atl 35057  df-cvlat 35081  df-hlat 35110
This theorem is referenced by:  1cvratlt  35232  lhpexlt  35760
  Copyright terms: Public domain W3C validator