Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1conngr Structured version   Visualization version   GIF version

Theorem 1conngr 27368
 Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
1conngr ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)

Proof of Theorem 1conngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidg 4352 . . . . . . . . . 10 (𝑁 ∈ V → 𝑁 ∈ {𝑁})
21adantr 472 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ {𝑁})
3 eleq2 2829 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝑁} → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
43ad2antll 767 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
52, 4mpbird 247 . . . . . . . 8 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ (Vtx‘𝐺))
6 eqid 2761 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
760pthonv 27303 . . . . . . . 8 (𝑁 ∈ (Vtx‘𝐺) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
85, 7syl 17 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
9 oveq2 6823 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑁(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑁))
109breqd 4816 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
11102exbidv 2002 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1211ralsng 4363 . . . . . . . 8 (𝑁 ∈ V → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1312adantr 472 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
148, 13mpbird 247 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)
15 oveq1 6822 . . . . . . . . . . 11 (𝑘 = 𝑁 → (𝑘(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑛))
1615breqd 4816 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
17162exbidv 2002 . . . . . . . . 9 (𝑘 = 𝑁 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1817ralbidv 3125 . . . . . . . 8 (𝑘 = 𝑁 → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1918ralsng 4363 . . . . . . 7 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2019adantr 472 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2114, 20mpbird 247 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
22 id 22 . . . . . . 7 ((Vtx‘𝐺) = {𝑁} → (Vtx‘𝐺) = {𝑁})
23 raleq 3278 . . . . . . 7 ((Vtx‘𝐺) = {𝑁} → (∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2422, 23raleqbidv 3292 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2524ad2antll 767 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2621, 25mpbird 247 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
276isconngr 27363 . . . . 5 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2827ad2antrl 766 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2926, 28mpbird 247 . . 3 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝐺 ∈ ConnGraph)
3029ex 449 . 2 (𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
31 snprc 4398 . . 3 𝑁 ∈ V ↔ {𝑁} = ∅)
32 eqeq2 2772 . . . . 5 ({𝑁} = ∅ → ((Vtx‘𝐺) = {𝑁} ↔ (Vtx‘𝐺) = ∅))
3332anbi2d 742 . . . 4 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) ↔ (𝐺𝑊 ∧ (Vtx‘𝐺) = ∅)))
34 0vconngr 27367 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)
3533, 34syl6bi 243 . . 3 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3631, 35sylbi 207 . 2 𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3730, 36pm2.61i 176 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2140  ∀wral 3051  Vcvv 3341  ∅c0 4059  {csn 4322   class class class wbr 4805  ‘cfv 6050  (class class class)co 6815  Vtxcvtx 26095  PathsOncpthson 26842  ConnGraphcconngr 27360 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-wlks 26727  df-wlkson 26728  df-trls 26821  df-trlson 26822  df-pths 26844  df-pthson 26846  df-conngr 27361 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator