![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19prm | Structured version Visualization version GIF version |
Description: 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
19prm | ⊢ ;19 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 11520 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 9nn 11404 | . . 3 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | decnncl 11730 | . 2 ⊢ ;19 ∈ ℕ |
4 | 1nn 11243 | . . 3 ⊢ 1 ∈ ℕ | |
5 | 9nn0 11528 | . . 3 ⊢ 9 ∈ ℕ0 | |
6 | 1lt10 11893 | . . 3 ⊢ 1 < ;10 | |
7 | 4, 5, 1, 6 | declti 11758 | . 2 ⊢ 1 < ;19 |
8 | 4nn0 11523 | . . 3 ⊢ 4 ∈ ℕ0 | |
9 | 4t2e8 11393 | . . 3 ⊢ (4 · 2) = 8 | |
10 | df-9 11298 | . . 3 ⊢ 9 = (8 + 1) | |
11 | 1, 8, 9, 10 | dec2dvds 15989 | . 2 ⊢ ¬ 2 ∥ ;19 |
12 | 3nn 11398 | . . 3 ⊢ 3 ∈ ℕ | |
13 | 6nn0 11525 | . . 3 ⊢ 6 ∈ ℕ0 | |
14 | 8nn0 11527 | . . . 4 ⊢ 8 ∈ ℕ0 | |
15 | 8p1e9 11370 | . . . 4 ⊢ (8 + 1) = 9 | |
16 | 6cn 11314 | . . . . 5 ⊢ 6 ∈ ℂ | |
17 | 3cn 11307 | . . . . 5 ⊢ 3 ∈ ℂ | |
18 | 6t3e18 11854 | . . . . 5 ⊢ (6 · 3) = ;18 | |
19 | 16, 17, 18 | mulcomli 10259 | . . . 4 ⊢ (3 · 6) = ;18 |
20 | 1, 14, 15, 19 | decsuc 11747 | . . 3 ⊢ ((3 · 6) + 1) = ;19 |
21 | 1lt3 11408 | . . 3 ⊢ 1 < 3 | |
22 | 12, 13, 4, 20, 21 | ndvdsi 15358 | . 2 ⊢ ¬ 3 ∥ ;19 |
23 | 2nn0 11521 | . . 3 ⊢ 2 ∈ ℕ0 | |
24 | 5nn0 11524 | . . 3 ⊢ 5 ∈ ℕ0 | |
25 | 9lt10 11885 | . . 3 ⊢ 9 < ;10 | |
26 | 1lt2 11406 | . . 3 ⊢ 1 < 2 | |
27 | 1, 23, 5, 24, 25, 26 | decltc 11744 | . 2 ⊢ ;19 < ;25 |
28 | 3, 7, 11, 22, 27 | prmlem1 16036 | 1 ⊢ ;19 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 (class class class)co 6814 1c1 10149 · cmul 10153 2c2 11282 3c3 11283 4c4 11284 5c5 11285 6c6 11286 8c8 11288 9c9 11289 ;cdc 11705 ℙcprime 15607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-rp 12046 df-fz 12540 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-dvds 15203 df-prm 15608 |
This theorem is referenced by: 2503lem3 16068 |
Copyright terms: Public domain | W3C validator |