Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9t Structured version   Visualization version   GIF version

Theorem 19.9t 2109
 Description: A closed version of 19.9 2110. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) (Proof shortened by Wolf Lammen, 14-Jul-2020.)
Assertion
Ref Expression
19.9t (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))

Proof of Theorem 19.9t
StepHypRef Expression
1 id 22 . . 3 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
2119.9d 2108 . 2 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
3 19.8a 2090 . 2 (𝜑 → ∃𝑥𝜑)
42, 3impbid1 215 1 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∃wex 1744  Ⅎwnf 1748 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087 This theorem depends on definitions:  df-bi 197  df-ex 1745  df-nf 1750 This theorem is referenced by:  19.9  2110  19.21t  2111  19.21tOLDOLD  2112  spimt  2289  sbft  2407  vtoclegft  3311  bj-cbv3tb  32836  bj-spimtv  32843  bj-sbftv  32888  bj-equsal1t  32934  bj-19.21t  32942  19.9alt  34570
 Copyright terms: Public domain W3C validator