![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.43 | Structured version Visualization version GIF version |
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
Ref | Expression |
---|---|
19.43 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 835 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | 1 | exbii 1924 | . . 3 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ∃𝑥(¬ 𝜑 → 𝜓)) |
3 | 19.35 1957 | . . 3 ⊢ (∃𝑥(¬ 𝜑 → 𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓)) | |
4 | alnex 1854 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
5 | 4 | imbi1i 338 | . . 3 ⊢ ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
6 | 2, 3, 5 | 3bitri 286 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
7 | df-or 835 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) | |
8 | 6, 7 | bitr4i 267 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 834 ∀wal 1629 ∃wex 1852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 |
This theorem depends on definitions: df-bi 197 df-or 835 df-ex 1853 |
This theorem is referenced by: 19.34 2070 19.44v 2080 19.45v 2081 19.44 2262 19.45 2263 rexun 3944 unipr 4587 uniun 4593 unopab 4862 zfpair 5032 dmun 5469 coundi 5780 coundir 5781 kmlem16 9189 vdwapun 15885 pm10.42 39089 |
Copyright terms: Public domain | W3C validator |