![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version |
Description: Version of 19.42 2143 with two quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1922 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.42v 1921 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
3 | 1, 2 | bitri 264 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 |
This theorem is referenced by: 19.42vvv 1924 exdistr2 1925 3exdistr 1926 ceqsex3v 3277 ceqsex4v 3278 ceqsex8v 3280 elvvv 5212 xpdifid 5597 dfoprab2 6743 resoprab 6798 elrnmpt2res 6816 ov3 6839 ov6g 6840 oprabex3 7199 xpassen 8095 axaddf 10004 axmulf 10005 qqhval2 30154 bnj996 31151 inxpxrn 34293 dvhopellsm 36723 |
Copyright terms: Public domain | W3C validator |