![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version GIF version |
Description: Version of 19.42 2143 with a dv condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1917 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
2 | exancom 1827 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
3 | ancom 465 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 292 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 |
This theorem is referenced by: exdistr 1922 19.42vv 1923 19.42vvv 1924 4exdistr 1927 eeeanv 2219 2sb5 2471 rexcom4a 3257 ceqsex2 3275 reuind 3444 2reu5lem3 3448 sbccomlem 3541 bm1.3ii 4817 eqvinop 4984 dmopabss 5368 dmopab3 5369 mptpreima 5666 mptfnf 6053 brprcneu 6222 fndmin 6364 fliftf 6605 dfoprab2 6743 dmoprab 6783 dmoprabss 6784 fnoprabg 6803 uniuni 7013 zfrep6 7176 opabex3d 7187 opabex3 7188 fsplit 7327 eroveu 7885 rankuni 8764 aceq1 8978 dfac3 8982 kmlem14 9023 kmlem15 9024 axdc2lem 9308 1idpr 9889 ltexprlem1 9896 ltexprlem4 9899 xpcogend 13759 shftdm 13855 joindm 17050 meetdm 17064 toprntopon 20777 ntreq0 20929 cnextf 21917 adjeu 28876 rexunirn 29458 fpwrelmapffslem 29635 tgoldbachgt 30869 bnj1019 30976 bnj1209 30993 bnj1033 31163 bnj1189 31203 dmscut 32043 dfiota3 32155 brimg 32169 funpartlem 32174 bj-eeanvw 32829 bj-rexcom4 32994 bj-rexcom4a 32995 bj-snsetex 33076 bj-snglc 33082 bj-restuni 33175 itg2addnc 33594 sbccom2lem 34059 eldmres 34177 rnxrn 34296 rp-isfinite6 38181 undmrnresiss 38227 elintima 38262 pm11.58 38907 pm11.71 38914 2sbc5g 38934 iotasbc2 38938 ax6e2nd 39091 ax6e2ndVD 39458 ax6e2ndALT 39480 stoweidlem60 40595 elpglem3 42784 |
Copyright terms: Public domain | W3C validator |