Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.41rgVD Structured version   Visualization version   GIF version

Theorem 19.41rgVD 38958
Description: Virtual deduction proof of 19.41rg 38586. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 38586 is 19.41rgVD 38958 without virtual deductions and was automatically derived from 19.41rgVD 38958. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (𝜓 → (𝜑 → (𝜑𝜓)))
2:1: ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑𝜓))))
3:2: 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
4:3: (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 𝑥(𝜑 → (𝜑𝜓))))
5:: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
6:4,5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
7:: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥𝜓   )
8:6,7: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥(𝜑 → (𝜑𝜓))   )
9:8: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
10:9: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
11:5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   )
12:10,11: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( 𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
13:12: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
14:13: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
qed:14: (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 𝜓) → ∃𝑥(𝜑𝜓)))
Assertion
Ref Expression
19.41rgVD (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))

Proof of Theorem 19.41rgVD
StepHypRef Expression
1 idn1 38610 . . . . . . . . 9 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
2 pm3.2 463 . . . . . . . . . . . . 13 (𝜑 → (𝜓 → (𝜑𝜓)))
32com12 32 . . . . . . . . . . . 12 (𝜓 → (𝜑 → (𝜑𝜓)))
43a1i 11 . . . . . . . . . . 11 ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
54ax-gen 1720 . . . . . . . . . 10 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
6 al2im 1740 . . . . . . . . . 10 (∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓)))) → (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))))
75, 6e0a 38819 . . . . . . . . 9 (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
81, 7e1a 38672 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
9 idn2 38658 . . . . . . . 8 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥𝜓   )
10 id 22 . . . . . . . 8 ((∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
118, 9, 10e12 38771 . . . . . . 7 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   𝑥(𝜑 → (𝜑𝜓))   )
12 exim 1759 . . . . . . 7 (∀𝑥(𝜑 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
1311, 12e2 38676 . . . . . 6 (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶   (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
1413in2 38650 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
15 sp 2051 . . . . . 6 (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓))
161, 15e1a 38672 . . . . 5 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀𝑥𝜓)   )
17 imim2 58 . . . . 5 ((∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → ((𝜓 → ∀𝑥𝜓) → (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))))
1814, 16, 17e11 38733 . . . 4 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
19 pm2.04 90 . . . 4 ((𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))) → (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))))
2018, 19e1a 38672 . . 3 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
21 pm3.31 461 . . 3 ((∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
2220, 21e1a 38672 . 2 (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
2322in1 38607 1 (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1479  wex 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-12 2045
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1703  df-vd1 38606  df-vd2 38614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator