![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.3v | Structured version Visualization version GIF version |
Description: Version of 19.3 2107 with a dv condition, requiring fewer axioms. Any formula can be universally quantified using a variable which it does not contain. See also 19.9v 1953. (Contributed by Anthony Hart, 13-Sep-2011.) Remove dependency on ax-7 1981. (Revised by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
19.3v | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1793 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.9v 1953 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ 𝜑) | |
3 | 2 | con2bii 346 | . 2 ⊢ (𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) |
4 | 1, 3 | bitr4i 267 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1521 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: spvw 1955 19.27v 1964 19.28v 1965 19.37v 1966 axrep1 4805 kmlem14 9023 zfcndrep 9474 zfcndpow 9476 zfcndac 9479 bj-axrep1 32913 bj-snsetex 33076 iooelexlt 33340 dford4 37913 relexp0eq 38310 |
Copyright terms: Public domain | W3C validator |