MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3OLD Structured version   Visualization version   GIF version

Theorem 19.3OLD 2364
Description: Obsolete proof of 19.3 2224 as of 6-Oct-2021. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.3OLD.1 𝑥𝜑
Assertion
Ref Expression
19.3OLD (∀𝑥𝜑𝜑)

Proof of Theorem 19.3OLD
StepHypRef Expression
1 sp 2207 . 2 (∀𝑥𝜑𝜑)
2 19.3OLD.1 . . 3 𝑥𝜑
32nfriOLD 2351 . 2 (𝜑 → ∀𝑥𝜑)
41, 3impbii 199 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1629  wnfOLD 1857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-ex 1853  df-nfOLD 1869
This theorem is referenced by:  19.27OLD  2396  19.28OLD  2397
  Copyright terms: Public domain W3C validator