MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35ri Structured version   Visualization version   GIF version

Theorem 19.35ri 1805
Description: Inference associated with 19.35 1803. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.35ri.1 (∀𝑥𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
19.35ri 𝑥(𝜑𝜓)

Proof of Theorem 19.35ri
StepHypRef Expression
1 19.35ri.1 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
2 19.35 1803 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2mpbir 221 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1479  wex 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735
This theorem depends on definitions:  df-bi 197  df-ex 1703
This theorem is referenced by:  qexmid  2061  axrep1  4763  axextnd  9398  axinfnd  9413  bj-axrep1  32763
  Copyright terms: Public domain W3C validator