Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35i Structured version   Visualization version   GIF version

Theorem 19.35i 1955
 Description: Inference associated with 19.35 1954. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
19.35i.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.35i (∀𝑥𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2 𝑥(𝜑𝜓)
2 19.35 1954 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2mpbi 220 1 (∀𝑥𝜑 → ∃𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1630  ∃wex 1853 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886 This theorem depends on definitions:  df-bi 197  df-ex 1854 This theorem is referenced by:  19.2  2058  spimeh  2080  ax6e  2395  spimed  2400  equvini  2483  equvel  2484  euex  2631  axrep4  4927  zfcndrep  9648  bj-ax6elem2  32980  bj-spimedv  33047  bj-axrep4  33119  wl-exeq  33652  spd  42953
 Copyright terms: Public domain W3C validator