MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28 Structured version   Visualization version   GIF version

Theorem 19.28 2134
Description: Theorem 19.28 of [Margaris] p. 90. See 19.28v 1965 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.)
Hypothesis
Ref Expression
19.28.1 𝑥𝜑
Assertion
Ref Expression
19.28 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.28
StepHypRef Expression
1 19.26 1838 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.28.1 . . . 4 𝑥𝜑
3219.3 2107 . . 3 (∀𝑥𝜑𝜑)
43anbi1i 731 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
51, 4bitri 264 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wal 1521  wnf 1748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-nf 1750
This theorem is referenced by:  aaan  2206  wl-ax11-lem7  33498
  Copyright terms: Public domain W3C validator