![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2113 with a dv condition, requiring fewer axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a non-freeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a non-freeness hypothesis ("f" stands for "not free in", see df-nf 1750) instead of a dv condition. For instance, 19.21v 1908 versus 19.21 2113 and vtoclf 3289 versus vtocl 3290. Note that "not free in" is less restrictive than "does not occur in." Note that the version with a dv condition is easily proved from the version with the corresponding non-freeness hypothesis, by using nfv 1883. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1907 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1881 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1806 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 199 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: 19.32v 1909 pm11.53v 1962 19.12vvv 1963 pm11.53 2215 19.12vv 2216 cbval2 2315 cbvaldva 2317 sbhb 2466 2sb6 2472 r2al 2968 r3al 2969 r19.21v 2989 ceqsralt 3260 rspc2gv 3352 euind 3426 reu2 3427 reuind 3444 unissb 4501 dfiin2g 4585 axrep5 4809 asymref 5547 fvn0ssdmfun 6390 dff13 6552 mpt22eqb 6811 findcard3 8244 marypha1lem 8380 marypha2lem3 8384 aceq1 8978 kmlem15 9024 cotr2g 13761 bnj864 31118 bnj865 31119 bnj978 31145 bnj1176 31199 bnj1186 31201 dfon2lem8 31819 dffun10 32146 bj-ssb1 32758 bj-ssbcom3lem 32775 bj-cbval2v 32862 bj-axrep5 32917 bj-ralcom4 32993 mpt2bi123f 34101 mptbi12f 34105 elmapintrab 38199 undmrnresiss 38227 dfhe3 38386 dffrege115 38589 ntrneiiso 38706 ntrneikb 38709 pm10.541 38883 pm10.542 38884 19.21vv 38892 pm11.62 38911 2sbc6g 38933 2rexsb 41491 |
Copyright terms: Public domain | W3C validator |