![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21tOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of 19.21t 2229 as of 3-Nov-2021. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1858 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.21tOLDOLD | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5r 2218 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
2 | alim 1886 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) |
4 | 19.9t 2227 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
5 | 4 | imbi1d 330 | . . 3 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
6 | 19.38 1914 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl6bir 244 | . 2 ⊢ (Ⅎ𝑥𝜑 → ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓))) |
8 | 3, 7 | impbid 202 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1629 ∃wex 1852 Ⅎwnf 1856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-ex 1853 df-nf 1858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |