![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 10nn0 | Structured version Visualization version GIF version |
Description: 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
10nn0 | ⊢ ;10 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 11509 | . 2 ⊢ 1 ∈ ℕ0 | |
2 | 0nn0 11508 | . 2 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 11713 | 1 ⊢ ;10 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2144 0cc0 10137 1c1 10138 ℕ0cn0 11493 ;cdc 11694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-dec 11695 |
This theorem is referenced by: decnncl 11719 dec0u 11721 dec0h 11723 decsuc 11736 decle 11741 decma 11764 decmac 11766 decma2c 11768 decadd 11770 decaddc 11772 decsubi 11783 decmul1 11785 decmul1c 11787 decmul2c 11789 decmul10add 11793 9t11e99 11871 dec2dvds 15973 decsplit0b 15990 decsplit1 15992 decsplit 15993 karatsuba 15998 139prm 16037 317prm 16039 1259lem1 16044 1259lem3 16046 2503lem1 16050 4001lem1 16054 4001lem3 16056 dfdec100 29910 dp20u 29919 dp20h 29920 dp2clq 29922 dpmul100 29939 dpmul1000 29941 dpexpp1 29950 0dp2dp 29951 dpmul 29955 dpmul4 29956 hgt750lemd 31060 hgt750lem2 31064 hgt750leme 31070 tgoldbachgnn 31071 rmydioph 38100 tgoldbach 42223 |
Copyright terms: Public domain | W3C validator |