Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xnn0 Structured version   Visualization version   GIF version

Theorem 0xnn0 11582
 Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0 0 ∈ ℕ0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 11579 . 2 0 ⊆ ℕ0*
2 0nn0 11520 . 2 0 ∈ ℕ0
31, 2sselii 3742 1 0 ∈ ℕ0*
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2140  0cc0 10149  ℕ0cn0 11505  ℕ0*cxnn0 11576 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-mulcl 10211  ax-i2m1 10217 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-v 3343  df-un 3721  df-in 3723  df-ss 3730  df-sn 4323  df-n0 11506  df-xnn0 11577 This theorem is referenced by:  0edg0rgr  26700  rgrusgrprc  26717  rusgrprc  26718  rgrprcx  26720
 Copyright terms: Public domain W3C validator