![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0xnn0 | Structured version Visualization version GIF version |
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
0xnn0 | ⊢ 0 ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 11579 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 0nn0 11520 | . 2 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | sselii 3742 | 1 ⊢ 0 ∈ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 0cc0 10149 ℕ0cn0 11505 ℕ0*cxnn0 11576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-mulcl 10211 ax-i2m1 10217 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-un 3721 df-in 3723 df-ss 3730 df-sn 4323 df-n0 11506 df-xnn0 11577 |
This theorem is referenced by: 0edg0rgr 26700 rgrusgrprc 26717 rusgrprc 26718 rgrprcx 26720 |
Copyright terms: Public domain | W3C validator |