MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0trrel Structured version   Visualization version   GIF version

Theorem 0trrel 13930
Description: The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
0trrel (∅ ∘ ∅) ⊆ ∅

Proof of Theorem 0trrel
StepHypRef Expression
1 co01 5793 . 2 (∅ ∘ ∅) = ∅
21eqimssi 3808 1 (∅ ∘ ∅) ⊆ ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3723  c0 4063  ccom 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259
This theorem is referenced by:  trclfvcotrg  13965  ust0  22243
  Copyright terms: Public domain W3C validator