Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sn0ep Structured version   Visualization version   GIF version

Theorem 0sn0ep 5167
 Description: An example of an epsilon relation. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
0sn0ep ∅ E {∅}

Proof of Theorem 0sn0ep
StepHypRef Expression
1 0ex 4925 . . 3 ∅ ∈ V
21snid 4348 . 2 ∅ ∈ {∅}
3 snex 5037 . . 3 {∅} ∈ V
43epelc 5165 . 2 (∅ E {∅} ↔ ∅ ∈ {∅})
52, 4mpbir 221 1 ∅ E {∅}
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2145  ∅c0 4063  {csn 4317   class class class wbr 4787   E cep 5162 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-eprel 5163 This theorem is referenced by:  epn0  5168
 Copyright terms: Public domain W3C validator