![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sn0ep | Structured version Visualization version GIF version |
Description: An example of an epsilon relation. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
0sn0ep | ⊢ ∅ E {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4925 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snid 4348 | . 2 ⊢ ∅ ∈ {∅} |
3 | snex 5037 | . . 3 ⊢ {∅} ∈ V | |
4 | 3 | epelc 5165 | . 2 ⊢ (∅ E {∅} ↔ ∅ ∈ {∅}) |
5 | 2, 4 | mpbir 221 | 1 ⊢ ∅ E {∅} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 ∅c0 4063 {csn 4317 class class class wbr 4787 E cep 5162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4788 df-opab 4848 df-eprel 5163 |
This theorem is referenced by: epn0 5168 |
Copyright terms: Public domain | W3C validator |