![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sdom | Structured version Visualization version GIF version |
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) |
Ref | Expression |
---|---|
0sdom.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
0sdom | ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | 0sdomg 8256 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ∅c0 4058 class class class wbr 4804 ≺ csdm 8122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 |
This theorem is referenced by: sdom1 8327 marypha1lem 8506 konigthlem 9602 pwcfsdom 9617 cfpwsdom 9618 rankcf 9811 r1tskina 9816 1stcfb 21470 snct 29821 sigapildsys 30555 |
Copyright terms: Public domain | W3C validator |