![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0rngo | Structured version Visualization version GIF version |
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
0ring.1 | ⊢ 𝐺 = (1st ‘𝑅) |
0ring.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
0ring.3 | ⊢ 𝑋 = ran 𝐺 |
0ring.4 | ⊢ 𝑍 = (GId‘𝐺) |
0ring.5 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
0rngo | ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.4 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
2 | fvex 6239 | . . . . . . 7 ⊢ (GId‘𝐺) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . . . . 6 ⊢ 𝑍 ∈ V |
4 | 3 | snid 4241 | . . . . 5 ⊢ 𝑍 ∈ {𝑍} |
5 | eleq1 2718 | . . . . 5 ⊢ (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍})) | |
6 | 4, 5 | mpbii 223 | . . . 4 ⊢ (𝑍 = 𝑈 → 𝑈 ∈ {𝑍}) |
7 | 0ring.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
8 | 7, 1 | 0idl 33954 | . . . . 5 ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
9 | 0ring.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
10 | 0ring.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
11 | 0ring.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
12 | 7, 9, 10, 11 | 1idl 33955 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
13 | 8, 12 | mpdan 703 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋)) |
14 | 6, 13 | syl5ib 234 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋)) |
15 | eqcom 2658 | . . 3 ⊢ ({𝑍} = 𝑋 ↔ 𝑋 = {𝑍}) | |
16 | 14, 15 | syl6ib 241 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 → 𝑋 = {𝑍})) |
17 | 7 | rneqi 5384 | . . . . 5 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
18 | 10, 17 | eqtri 2673 | . . . 4 ⊢ 𝑋 = ran (1st ‘𝑅) |
19 | 18, 9, 11 | rngo1cl 33868 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
20 | eleq2 2719 | . . . 4 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ {𝑍})) | |
21 | elsni 4227 | . . . . 5 ⊢ (𝑈 ∈ {𝑍} → 𝑈 = 𝑍) | |
22 | 21 | eqcomd 2657 | . . . 4 ⊢ (𝑈 ∈ {𝑍} → 𝑍 = 𝑈) |
23 | 20, 22 | syl6bi 243 | . . 3 ⊢ (𝑋 = {𝑍} → (𝑈 ∈ 𝑋 → 𝑍 = 𝑈)) |
24 | 19, 23 | syl5com 31 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈)) |
25 | 16, 24 | impbid 202 | 1 ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 ran crn 5144 ‘cfv 5926 1st c1st 7208 2nd c2nd 7209 GIdcgi 27472 RingOpscrngo 33823 Idlcidl 33936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-1st 7210 df-2nd 7211 df-grpo 27475 df-gid 27476 df-ginv 27477 df-ablo 27527 df-ass 33772 df-exid 33774 df-mgmOLD 33778 df-sgrOLD 33790 df-mndo 33796 df-rngo 33824 df-idl 33939 |
This theorem is referenced by: smprngopr 33981 isfldidl2 33998 |
Copyright terms: Public domain | W3C validator |