MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ramcl Structured version   Visualization version   GIF version

Theorem 0ramcl 15774
Description: Lemma for ramcl 15780: Existence of the Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
0ramcl ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem 0ramcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6083 . . . . . . . 8 (𝐹:𝑅⟶ℕ0𝐹 Fn 𝑅)
2 dffn4 6159 . . . . . . . 8 (𝐹 Fn 𝑅𝐹:𝑅onto→ran 𝐹)
31, 2sylib 208 . . . . . . 7 (𝐹:𝑅⟶ℕ0𝐹:𝑅onto→ran 𝐹)
43ad2antlr 763 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:𝑅onto→ran 𝐹)
5 foeq2 6150 . . . . . . 7 (𝑅 = ∅ → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
65adantl 481 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (𝐹:𝑅onto→ran 𝐹𝐹:∅–onto→ran 𝐹))
74, 6mpbid 222 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹:∅–onto→ran 𝐹)
8 fo00 6210 . . . . . 6 (𝐹:∅–onto→ran 𝐹 ↔ (𝐹 = ∅ ∧ ran 𝐹 = ∅))
98simplbi 475 . . . . 5 (𝐹:∅–onto→ran 𝐹𝐹 = ∅)
107, 9syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → 𝐹 = ∅)
1110oveq2d 6706 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) = (0 Ramsey ∅))
12 0nn0 11345 . . . . 5 0 ∈ ℕ0
13 ram0 15773 . . . . 5 (0 ∈ ℕ0 → (0 Ramsey ∅) = 0)
1412, 13ax-mp 5 . . . 4 (0 Ramsey ∅) = 0
1514, 12eqeltri 2726 . . 3 (0 Ramsey ∅) ∈ ℕ0
1611, 15syl6eqel 2738 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
17 0ram2 15772 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < ))
18 frn 6091 . . . . . . 7 (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0)
19183ad2ant3 1104 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0)
20 nn0ssz 11436 . . . . . . . 8 0 ⊆ ℤ
2119, 20syl6ss 3648 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ)
22 fdm 6089 . . . . . . . . . 10 (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅)
23223ad2ant3 1104 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅)
24 simp2 1082 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅)
2523, 24eqnetrd 2890 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅)
26 dm0rn0 5374 . . . . . . . . 9 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2726necon3bii 2875 . . . . . . . 8 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2825, 27sylib 208 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅)
29 nn0ssre 11334 . . . . . . . . . 10 0 ⊆ ℝ
3019, 29syl6ss 3648 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ)
31 simp1 1081 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin)
3233ad2ant3 1104 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅onto→ran 𝐹)
33 fofi 8293 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ 𝐹:𝑅onto→ran 𝐹) → ran 𝐹 ∈ Fin)
3431, 32, 33syl2anc 694 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin)
35 fimaxre 11006 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
3630, 34, 28, 35syl3anc 1366 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥)
37 ssrexv 3700 . . . . . . . 8 (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
3821, 36, 37sylc 65 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
39 suprzcl2 11816 . . . . . . 7 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4021, 28, 38, 39syl3anc 1366 . . . . . 6 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4119, 40sseldd 3637 . . . . 5 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → sup(ran 𝐹, ℝ, < ) ∈ ℕ0)
4217, 41eqeltrd 2730 . . . 4 ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
43423expa 1284 . . 3 (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅) ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
4443an32s 863 . 2 (((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → (0 Ramsey 𝐹) ∈ ℕ0)
4516, 44pm2.61dane 2910 1 ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948   class class class wbr 4685  dom cdm 5143  ran crn 5144   Fn wfn 5921  wf 5922  ontowfo 5924  (class class class)co 6690  Fincfn 7997  supcsup 8387  cr 9973  0cc0 9974   < clt 10112  cle 10113  0cn0 11330  cz 11415   Ramsey cram 15750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-fac 13101  df-bc 13130  df-hash 13158  df-ram 15752
This theorem is referenced by:  ramcl  15780
  Copyright terms: Public domain W3C validator