![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ram2 | Structured version Visualization version GIF version |
Description: The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
0ram2 | ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6091 | . . . . 5 ⊢ (𝐹:𝑅⟶ℕ0 → ran 𝐹 ⊆ ℕ0) | |
2 | 1 | 3ad2ant3 1104 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℕ0) |
3 | nn0ssz 11436 | . . . 4 ⊢ ℕ0 ⊆ ℤ | |
4 | 2, 3 | syl6ss 3648 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℤ) |
5 | nn0ssre 11334 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
6 | 2, 5 | syl6ss 3648 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ⊆ ℝ) |
7 | simp1 1081 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ∈ Fin) | |
8 | ffn 6083 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → 𝐹 Fn 𝑅) | |
9 | 8 | 3ad2ant3 1104 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹 Fn 𝑅) |
10 | dffn4 6159 | . . . . . 6 ⊢ (𝐹 Fn 𝑅 ↔ 𝐹:𝑅–onto→ran 𝐹) | |
11 | 9, 10 | sylib 208 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝐹:𝑅–onto→ran 𝐹) |
12 | fofi 8293 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝐹:𝑅–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
13 | 7, 11, 12 | syl2anc 694 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ∈ Fin) |
14 | fdm 6089 | . . . . . . 7 ⊢ (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅) | |
15 | 14 | 3ad2ant3 1104 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅) |
16 | simp2 1082 | . . . . . 6 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → 𝑅 ≠ ∅) | |
17 | 15, 16 | eqnetrd 2890 | . . . . 5 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → dom 𝐹 ≠ ∅) |
18 | dm0rn0 5374 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
19 | 18 | necon3bii 2875 | . . . . 5 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
20 | 17, 19 | sylib 208 | . . . 4 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ran 𝐹 ≠ ∅) |
21 | fimaxre 11006 | . . . 4 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | |
22 | 6, 13, 20, 21 | syl3anc 1366 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
23 | ssrexv 3700 | . . 3 ⊢ (ran 𝐹 ⊆ ℤ → (∃𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) | |
24 | 4, 22, 23 | sylc 65 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
25 | 0ram 15771 | . 2 ⊢ (((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | |
26 | 24, 25 | mpdan 703 | 1 ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 ∅c0 3948 class class class wbr 4685 dom cdm 5143 ran crn 5144 Fn wfn 5921 ⟶wf 5922 –onto→wfo 5924 (class class class)co 6690 Fincfn 7997 supcsup 8387 ℝcr 9973 0cc0 9974 < clt 10112 ≤ cle 10113 ℕ0cn0 11330 ℤcz 11415 Ramsey cram 15750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 df-ram 15752 |
This theorem is referenced by: 0ramcl 15774 |
Copyright terms: Public domain | W3C validator |