![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pval | Structured version Visualization version GIF version |
Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
Ref | Expression |
---|---|
0pval | ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p 23657 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
2 | 1 | fveq1i 6334 | . 2 ⊢ (0𝑝‘𝐴) = ((ℂ × {0})‘𝐴) |
3 | c0ex 10240 | . . 3 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 6616 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0) |
5 | 2, 4 | syl5eq 2817 | 1 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {csn 4317 × cxp 5248 ‘cfv 6030 ℂcc 10140 0cc0 10142 0𝑝c0p 23656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-mulcl 10204 ax-i2m1 10210 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-0p 23657 |
This theorem is referenced by: 0plef 23659 0pledm 23660 itg1ge0 23673 mbfi1fseqlem5 23706 itg2addlem 23745 ne0p 24183 plyeq0lem 24186 plydivlem3 24270 plymul02 30963 dgraa0p 38245 |
Copyright terms: Public domain | W3C validator |