![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pthonv | Structured version Visualization version GIF version |
Description: For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 21-Jan-2021.) |
Ref | Expression |
---|---|
0pthon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0pthonv | ⊢ (𝑁 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4921 | . . 3 ⊢ ∅ ∈ V | |
2 | snex 5036 | . . 3 ⊢ {〈0, 𝑁〉} ∈ V | |
3 | 1, 2 | pm3.2i 447 | . 2 ⊢ (∅ ∈ V ∧ {〈0, 𝑁〉} ∈ V) |
4 | 0pthon.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | 0pthon1 27305 | . 2 ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉}) |
6 | breq12 4789 | . . 3 ⊢ ((𝑓 = ∅ ∧ 𝑝 = {〈0, 𝑁〉}) → (𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝 ↔ ∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉})) | |
7 | 6 | spc2egv 3444 | . 2 ⊢ ((∅ ∈ V ∧ {〈0, 𝑁〉} ∈ V) → (∅(𝑁(PathsOn‘𝐺)𝑁){〈0, 𝑁〉} → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
8 | 3, 5, 7 | mpsyl 68 | 1 ⊢ (𝑁 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∃wex 1851 ∈ wcel 2144 Vcvv 3349 ∅c0 4061 {csn 4314 〈cop 4320 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 0cc0 10137 Vtxcvtx 26094 PathsOncpthson 26844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-ifp 1049 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-hash 13321 df-word 13494 df-wlks 26729 df-wlkson 26730 df-trls 26823 df-trlson 26824 df-pths 26846 df-pthson 26848 |
This theorem is referenced by: 1pthon2v 27330 dfconngr1 27365 1conngr 27371 |
Copyright terms: Public domain | W3C validator |