MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pthonv Structured version   Visualization version   GIF version

Theorem 0pthonv 27306
Description: For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 21-Jan-2021.)
Hypothesis
Ref Expression
0pthon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0pthonv (𝑁𝑉 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
Distinct variable groups:   𝑓,𝐺,𝑝   𝑓,𝑁,𝑝
Allowed substitution hints:   𝑉(𝑓,𝑝)

Proof of Theorem 0pthonv
StepHypRef Expression
1 0ex 4921 . . 3 ∅ ∈ V
2 snex 5036 . . 3 {⟨0, 𝑁⟩} ∈ V
31, 2pm3.2i 447 . 2 (∅ ∈ V ∧ {⟨0, 𝑁⟩} ∈ V)
4 0pthon.v . . 3 𝑉 = (Vtx‘𝐺)
540pthon1 27305 . 2 (𝑁𝑉 → ∅(𝑁(PathsOn‘𝐺)𝑁){⟨0, 𝑁⟩})
6 breq12 4789 . . 3 ((𝑓 = ∅ ∧ 𝑝 = {⟨0, 𝑁⟩}) → (𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝 ↔ ∅(𝑁(PathsOn‘𝐺)𝑁){⟨0, 𝑁⟩}))
76spc2egv 3444 . 2 ((∅ ∈ V ∧ {⟨0, 𝑁⟩} ∈ V) → (∅(𝑁(PathsOn‘𝐺)𝑁){⟨0, 𝑁⟩} → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
83, 5, 7mpsyl 68 1 (𝑁𝑉 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wex 1851  wcel 2144  Vcvv 3349  c0 4061  {csn 4314  cop 4320   class class class wbr 4784  cfv 6031  (class class class)co 6792  0cc0 10137  Vtxcvtx 26094  PathsOncpthson 26844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-ifp 1049  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-wlks 26729  df-wlkson 26730  df-trls 26823  df-trlson 26824  df-pths 26846  df-pthson 26848
This theorem is referenced by:  1pthon2v  27330  dfconngr1  27365  1conngr  27371
  Copyright terms: Public domain W3C validator