MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0plef Structured version   Visualization version   GIF version

Theorem 0plef 23658
Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.)
Assertion
Ref Expression
0plef (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹))

Proof of Theorem 0plef
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12493 . . 3 (0[,)+∞) ⊆ ℝ
2 fss 6217 . . 3 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
31, 2mpan2 709 . 2 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ)
4 ffvelrn 6521 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5 elrege0 12491 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
65baib 982 . . . . 5 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
74, 6syl 17 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
87ralbidva 3123 . . 3 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
9 ffn 6206 . . . 4 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
10 ffnfv 6552 . . . . 5 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
1110baib 982 . . . 4 (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
129, 11syl 17 . . 3 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
13 0cn 10244 . . . . . . 7 0 ∈ ℂ
14 fnconstg 6254 . . . . . . 7 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1513, 14ax-mp 5 . . . . . 6 (ℂ × {0}) Fn ℂ
16 df-0p 23656 . . . . . . 7 0𝑝 = (ℂ × {0})
1716fneq1i 6146 . . . . . 6 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
1815, 17mpbir 221 . . . . 5 0𝑝 Fn ℂ
1918a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ)
20 cnex 10229 . . . . 5 ℂ ∈ V
2120a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℂ ∈ V)
22 reex 10239 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
24 ax-resscn 10205 . . . . 5 ℝ ⊆ ℂ
25 sseqin2 3960 . . . . 5 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2624, 25mpbi 220 . . . 4 (ℂ ∩ ℝ) = ℝ
27 0pval 23657 . . . . 5 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
2827adantl 473 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
29 eqidd 2761 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
3019, 9, 21, 23, 26, 28, 29ofrfval 7071 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝𝑟𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
318, 12, 303bitr4d 300 . 2 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝𝑟𝐹))
323, 31biadan2 677 1 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cin 3714  wss 3715  {csn 4321   class class class wbr 4804   × cxp 5264   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  𝑟 cofr 7062  cc 10146  cr 10147  0cc0 10148  +∞cpnf 10283  cle 10287  [,)cico 12390  0𝑝c0p 23655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-ofr 7064  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-ico 12394  df-0p 23656
This theorem is referenced by:  itg2i1fseq  23741  itg2addlem  23744  ftc1anclem8  33823
  Copyright terms: Public domain W3C validator