![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ov | Structured version Visualization version GIF version |
Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
Ref | Expression |
---|---|
0ov | ⊢ (𝐴∅𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6693 | . 2 ⊢ (𝐴∅𝐵) = (∅‘〈𝐴, 𝐵〉) | |
2 | 0fv 6265 | . 2 ⊢ (∅‘〈𝐴, 𝐵〉) = ∅ | |
3 | 1, 2 | eqtri 2673 | 1 ⊢ (𝐴∅𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∅c0 3948 〈cop 4216 ‘cfv 5926 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 ax-pow 4873 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-dm 5153 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: 2mpt20 6924 el2mpt2csbcl 7295 homarcl 16725 oppglsm 18103 iswwlksnon 26802 iswwlksnonOLD 26803 iswspthsnon 26806 iswspthsnonOLD 26807 mclsrcl 31584 |
Copyright terms: Public domain | W3C validator |