Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ome Structured version   Visualization version   GIF version

Theorem 0ome 41064
Description: The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
0ome.1 (𝜑𝑋𝑉)
0ome.2 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0)
Assertion
Ref Expression
0ome (𝜑𝑂 ∈ OutMeas)
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑂(𝑥)   𝑉(𝑥)

Proof of Theorem 0ome
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋 ↦ 0) = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
2 0e0iccpnf 12321 . . . . . . . . . 10 0 ∈ (0[,]+∞)
32a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋 → 0 ∈ (0[,]+∞))
41, 3fmpti 6423 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞)
5 0ome.2 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0)
6 eqidd 2652 . . . . . . . . . . . 12 (𝑥 = 𝑦 → 0 = 0)
76cbvmptv 4783 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑋 ↦ 0) = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
85, 7eqtri 2673 . . . . . . . . . 10 𝑂 = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
98feq1i 6074 . . . . . . . . 9 (𝑂:dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):dom 𝑂⟶(0[,]+∞))
108dmeqi 5357 . . . . . . . . . . 11 dom 𝑂 = dom (𝑦 ∈ 𝒫 𝑋 ↦ 0)
11 0re 10078 . . . . . . . . . . . . 13 0 ∈ ℝ
1211rgenw 2953 . . . . . . . . . . . 12 𝑦 ∈ 𝒫 𝑋0 ∈ ℝ
13 dmmptg 5670 . . . . . . . . . . . 12 (∀𝑦 ∈ 𝒫 𝑋0 ∈ ℝ → dom (𝑦 ∈ 𝒫 𝑋 ↦ 0) = 𝒫 𝑋)
1412, 13ax-mp 5 . . . . . . . . . . 11 dom (𝑦 ∈ 𝒫 𝑋 ↦ 0) = 𝒫 𝑋
1510, 14eqtri 2673 . . . . . . . . . 10 dom 𝑂 = 𝒫 𝑋
1615feq2i 6075 . . . . . . . . 9 ((𝑦 ∈ 𝒫 𝑋 ↦ 0):dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞))
179, 16bitri 264 . . . . . . . 8 (𝑂:dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞))
184, 17mpbir 221 . . . . . . 7 𝑂:dom 𝑂⟶(0[,]+∞)
19 unipw 4948 . . . . . . . . . 10 𝒫 𝑋 = 𝑋
2019pweqi 4195 . . . . . . . . 9 𝒫 𝒫 𝑋 = 𝒫 𝑋
2120eqcomi 2660 . . . . . . . 8 𝒫 𝑋 = 𝒫 𝒫 𝑋
2215eqcomi 2660 . . . . . . . . . 10 𝒫 𝑋 = dom 𝑂
2322unieqi 4477 . . . . . . . . 9 𝒫 𝑋 = dom 𝑂
2423pweqi 4195 . . . . . . . 8 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂
2515, 21, 243eqtri 2677 . . . . . . 7 dom 𝑂 = 𝒫 dom 𝑂
2618, 25pm3.2i 470 . . . . . 6 (𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂)
27 0elpw 4864 . . . . . . 7 ∅ ∈ 𝒫 𝑋
28 eqidd 2652 . . . . . . . 8 (𝑦 = ∅ → 0 = 0)
2911elexi 3244 . . . . . . . 8 0 ∈ V
3028, 8, 29fvmpt 6321 . . . . . . 7 (∅ ∈ 𝒫 𝑋 → (𝑂‘∅) = 0)
3127, 30ax-mp 5 . . . . . 6 (𝑂‘∅) = 0
3226, 31pm3.2i 470 . . . . 5 ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0)
3311leidi 10600 . . . . . . . . 9 0 ≤ 0
3433a1i 11 . . . . . . . 8 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 0 ≤ 0)
35 elpwi 4201 . . . . . . . . . . . . 13 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
3635adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧𝑦)
37 id 22 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂)
3821, 24eqtr2i 2674 . . . . . . . . . . . . . . . 16 𝒫 dom 𝑂 = 𝒫 𝑋
3938a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝑋)
4037, 39eleqtrd 2732 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑋)
41 elpwi 4201 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂𝑦𝑋)
4342adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑦𝑋)
4436, 43sstrd 3646 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧𝑋)
45 simpr 476 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧 ∈ 𝒫 𝑦)
46 elpwg 4199 . . . . . . . . . . . 12 (𝑧 ∈ 𝒫 𝑦 → (𝑧 ∈ 𝒫 𝑋𝑧𝑋))
4745, 46syl 17 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑧 ∈ 𝒫 𝑋𝑧𝑋))
4844, 47mpbird 247 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧 ∈ 𝒫 𝑋)
4911a1i 11 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 0 ∈ ℝ)
50 eqidd 2652 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → 0 = 0)
5150cbvmptv 4783 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝑋 ↦ 0) = (𝑧 ∈ 𝒫 𝑋 ↦ 0)
528, 51eqtri 2673 . . . . . . . . . . 11 𝑂 = (𝑧 ∈ 𝒫 𝑋 ↦ 0)
5352fvmpt2 6330 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 𝑋 ∧ 0 ∈ ℝ) → (𝑂𝑧) = 0)
5448, 49, 53syl2anc 694 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑧) = 0)
558fvmpt2 6330 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝑋 ∧ 0 ∈ ℝ) → (𝑂𝑦) = 0)
5640, 11, 55sylancl 695 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = 0)
5756adantr 480 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑦) = 0)
5854, 57breq12d 4698 . . . . . . . 8 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → ((𝑂𝑧) ≤ (𝑂𝑦) ↔ 0 ≤ 0))
5934, 58mpbird 247 . . . . . . 7 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑧) ≤ (𝑂𝑦))
6059ralrimiva 2995 . . . . . 6 (𝑦 ∈ 𝒫 dom 𝑂 → ∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
6160rgen 2951 . . . . 5 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)
6232, 61pm3.2i 470 . . . 4 (((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
6333a1i 11 . . . . . . 7 (𝑦 ∈ 𝒫 dom 𝑂 → 0 ≤ 0)
6452a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂𝑂 = (𝑧 ∈ 𝒫 𝑋 ↦ 0))
65 eqidd 2652 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 = 𝑦) → 0 = 0)
66 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂)
6715pweqi 4195 . . . . . . . . . . . . . 14 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋
6867a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6966, 68eleqtrd 2732 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝒫 𝑋)
70 elpwi 4201 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
7169, 70syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ⊆ 𝒫 𝑋)
72 sspwuni 4643 . . . . . . . . . . 11 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
7371, 72sylib 208 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 𝑦𝑋)
74 vuniex 6996 . . . . . . . . . . . 12 𝑦 ∈ V
7574a1i 11 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ V)
76 elpwg 4199 . . . . . . . . . . 11 ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
7775, 76syl 17 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
7873, 77mpbird 247 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ 𝒫 𝑋)
7911a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → 0 ∈ ℝ)
8064, 65, 78, 79fvmptd 6327 . . . . . . . 8 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂 𝑦) = 0)
8164reseq1d 5427 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦))
82 resmpt 5484 . . . . . . . . . . . 12 (𝑦 ⊆ 𝒫 𝑋 → ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦) = (𝑧𝑦 ↦ 0))
8371, 82syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 → ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦) = (𝑧𝑦 ↦ 0))
8481, 83eqtrd 2685 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = (𝑧𝑦 ↦ 0))
8584fveq2d 6233 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑂𝑦)) = (Σ^‘(𝑧𝑦 ↦ 0)))
86 nfv 1883 . . . . . . . . . 10 𝑧 𝑦 ∈ 𝒫 dom 𝑂
8786, 66sge0z 40910 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑧𝑦 ↦ 0)) = 0)
8885, 87eqtrd 2685 . . . . . . . 8 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑂𝑦)) = 0)
8980, 88breq12d 4698 . . . . . . 7 (𝑦 ∈ 𝒫 dom 𝑂 → ((𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)) ↔ 0 ≤ 0))
9063, 89mpbird 247 . . . . . 6 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))
9190a1d 25 . . . . 5 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
9291rgen 2951 . . . 4 𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))
9362, 92pm3.2i 470 . . 3 ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
9493a1i 11 . 2 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
958a1i 11 . . . 4 (𝜑𝑂 = (𝑦 ∈ 𝒫 𝑋 ↦ 0))
96 0ome.1 . . . . . 6 (𝜑𝑋𝑉)
97 pwexg 4880 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
9896, 97syl 17 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ V)
99 mptexg 6525 . . . . 5 (𝒫 𝑋 ∈ V → (𝑦 ∈ 𝒫 𝑋 ↦ 0) ∈ V)
10098, 99syl 17 . . . 4 (𝜑 → (𝑦 ∈ 𝒫 𝑋 ↦ 0) ∈ V)
10195, 100eqeltrd 2730 . . 3 (𝜑𝑂 ∈ V)
102 isome 41029 . . 3 (𝑂 ∈ V → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
103101, 102syl 17 . 2 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
10494, 103mpbird 247 1 (𝜑𝑂 ∈ OutMeas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468   class class class wbr 4685  cmpt 4762  dom cdm 5143  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  ωcom 7107  cdom 7995  cr 9973  0cc0 9974  +∞cpnf 10109  cle 10113  [,]cicc 12216  Σ^csumge0 40897  OutMeascome 41024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-sumge0 40898  df-ome 41025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator