MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntr Structured version   Visualization version   GIF version

Theorem 0ntr 21077
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
0ntr (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆) ≠ ∅)

Proof of Theorem 0ntr
StepHypRef Expression
1 ssdif0 4085 . . . . 5 (𝑋𝑆 ↔ (𝑋𝑆) = ∅)
2 eqss 3759 . . . . . . . . 9 (𝑆 = 𝑋 ↔ (𝑆𝑋𝑋𝑆))
3 fveq2 6352 . . . . . . . . . . . . 13 (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋))
4 clscld.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
54ntrtop 21076 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋)
63, 5sylan9eqr 2816 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋)
76eqeq1d 2762 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅))
87biimpd 219 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))
98ex 449 . . . . . . . . 9 (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))
102, 9syl5bir 233 . . . . . . . 8 (𝐽 ∈ Top → ((𝑆𝑋𝑋𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))
1110expd 451 . . . . . . 7 (𝐽 ∈ Top → (𝑆𝑋 → (𝑋𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))))
1211com34 91 . . . . . 6 (𝐽 ∈ Top → (𝑆𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋𝑆𝑋 = ∅))))
1312imp32 448 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆𝑋 = ∅))
141, 13syl5bir 233 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋𝑆) = ∅ → 𝑋 = ∅))
1514necon3d 2953 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋𝑆) ≠ ∅))
1615imp 444 . 2 (((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋𝑆) ≠ ∅)
1716an32s 881 1 (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  cdif 3712  wss 3715  c0 4058   cuni 4588  cfv 6049  Topctop 20900  intcnt 21023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-top 20901  df-ntr 21026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator