MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelrel Structured version   Visualization version   GIF version

Theorem 0nelrel 5311
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
0nelrel (Rel 𝑅 → ∅ ∉ 𝑅)

Proof of Theorem 0nelrel
StepHypRef Expression
1 df-rel 5265 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 206 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
3 0nelxp 5292 . . . 4 ¬ ∅ ∈ (V × V)
43a1i 11 . . 3 (Rel 𝑅 → ¬ ∅ ∈ (V × V))
52, 4ssneldd 3739 . 2 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
6 df-nel 3028 . 2 (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅)
75, 6sylibr 224 1 (Rel 𝑅 → ∅ ∉ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2131  wnel 3027  Vcvv 3332  wss 3707  c0 4050   × cxp 5256  Rel wrel 5263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-v 3334  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-opab 4857  df-xp 5264  df-rel 5265
This theorem is referenced by:  0nelfun  6059
  Copyright terms: Public domain W3C validator