![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelrel | Structured version Visualization version GIF version |
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
0nelrel | ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5265 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 206 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 0nelxp 5292 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (Rel 𝑅 → ¬ ∅ ∈ (V × V)) |
5 | 2, 4 | ssneldd 3739 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
6 | df-nel 3028 | . 2 ⊢ (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅) | |
7 | 5, 6 | sylibr 224 | 1 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2131 ∉ wnel 3027 Vcvv 3332 ⊆ wss 3707 ∅c0 4050 × cxp 5256 Rel wrel 5263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-opab 4857 df-xp 5264 df-rel 5265 |
This theorem is referenced by: 0nelfun 6059 |
Copyright terms: Public domain | W3C validator |