![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelfb | Structured version Visualization version GIF version |
Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
0nelfb | ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6383 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ∈ dom fBas) | |
2 | isfbas 21855 | . . . . 5 ⊢ (𝐵 ∈ dom fBas → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
4 | 3 | ibi 256 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
5 | simpr2 1236 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) → ∅ ∉ 𝐹) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∅ ∉ 𝐹) |
7 | df-nel 3037 | . 2 ⊢ (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹) | |
8 | 6, 7 | sylib 208 | 1 ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2140 ≠ wne 2933 ∉ wnel 3036 ∀wral 3051 ∩ cin 3715 ⊆ wss 3716 ∅c0 4059 𝒫 cpw 4303 dom cdm 5267 ‘cfv 6050 fBascfbas 19957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fv 6058 df-fbas 19966 |
This theorem is referenced by: fbdmn0 21860 fbncp 21865 fbun 21866 fbfinnfr 21867 0nelfil 21875 fsubbas 21893 fbasfip 21894 fgcl 21904 fbasrn 21910 uzfbas 21924 ucnextcn 22330 |
Copyright terms: Public domain | W3C validator |