![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ne1 | Structured version Visualization version GIF version |
Description: 0 ≠ 1; the reverse order is already proved. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ne1 | ⊢ 0 ≠ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10218 | . 2 ⊢ 1 ≠ 0 | |
2 | 1 | necomi 2987 | 1 ⊢ 0 ≠ 1 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2933 0cc0 10149 1c1 10150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-ext 2741 ax-1ne0 10218 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2754 df-ne 2934 |
This theorem is referenced by: f13idfv 13015 hashrabsn1 13376 prhash2ex 13400 s2f1o 13882 f1oun2prg 13883 wrdlen2i 13908 fprodn0f 14942 mod2eq1n2dvds 15294 bezoutr1 15505 xrsnsgrp 20005 i1f1lem 23676 mcubic 24795 cubic2 24796 asinlem 24816 sqff1o 25129 dchrpt 25213 lgsqr 25297 lgsqrmodndvds 25299 2lgslem4 25352 umgr2v2e 26653 umgr2v2evd2 26655 usgr2trlncl 26888 usgr2pthlem 26891 uspgrn2crct 26933 ntrl2v2e 27332 konigsbergiedgw 27422 konigsberglem2 27427 konigsberglem5 27430 nn0sqeq1 29844 indf1o 30417 eulerpartlemgf 30772 sgnpbi 30939 prodfzo03 31012 hgt750lemg 31063 hgt750lemb 31065 tgoldbachgt 31072 mncn0 38230 aaitgo 38253 fourierdlem60 40905 fourierdlem61 40906 fun2dmnopgexmpl 41830 zlmodzxzel 42662 zlmodzxzscm 42664 zlmodzxzadd 42665 zlmodzxznm 42815 zlmodzxzldeplem 42816 |
Copyright terms: Public domain | W3C validator |