![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1𝑜 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 7746 | . 2 ⊢ (∅ ∈ 1𝑜 ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ ∅ ∈ 1𝑜 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2137 ∅c0 4056 1𝑜c1o 7720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-nul 4939 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-v 3340 df-dif 3716 df-un 3718 df-nul 4057 df-sn 4320 df-suc 5888 df-1o 7727 |
This theorem is referenced by: dif20el 7752 oe1m 7792 oen0 7833 oeoa 7844 oeoe 7846 isfin4-3 9327 fin1a2lem4 9415 1lt2pi 9917 indpi 9919 sadcp1 15377 vr1cl2 19763 fvcoe1 19777 vr1cl 19787 subrgvr1cl 19832 coe1mul2lem1 19837 coe1tm 19843 ply1coe 19866 evl1var 19900 evls1var 19902 xkofvcn 21687 pw2f1ocnv 38104 wepwsolem 38112 |
Copyright terms: Public domain | W3C validator |