![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 0lnfn | Structured version Visualization version GIF version |
Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0lnfn | ⊢ ( ℋ × {0}) ∈ LinFn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10233 | . . 3 ⊢ 0 ∈ ℂ | |
2 | 1 | fconst6 6235 | . 2 ⊢ ( ℋ × {0}): ℋ⟶ℂ |
3 | hvmulcl 28204 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
4 | hvaddcl 28203 | . . . . . . 7 ⊢ (((𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) | |
5 | 3, 4 | sylan 561 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
6 | c0ex 10235 | . . . . . . 7 ⊢ 0 ∈ V | |
7 | 6 | fvconst2 6612 | . . . . . 6 ⊢ (((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = 0) |
9 | 6 | fvconst2 6612 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0) |
10 | 9 | oveq2d 6808 | . . . . . . . 8 ⊢ (𝑦 ∈ ℋ → (𝑥 · (( ℋ × {0})‘𝑦)) = (𝑥 · 0)) |
11 | mul01 10416 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 · 0) = 0) | |
12 | 10, 11 | sylan9eqr 2826 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (( ℋ × {0})‘𝑦)) = 0) |
13 | 6 | fvconst2 6612 | . . . . . . 7 ⊢ (𝑧 ∈ ℋ → (( ℋ × {0})‘𝑧) = 0) |
14 | 12, 13 | oveqan12d 6811 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = (0 + 0)) |
15 | 00id 10412 | . . . . . 6 ⊢ (0 + 0) = 0 | |
16 | 14, 15 | syl6eq 2820 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) = 0) |
17 | 8, 16 | eqtr4d 2807 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
18 | 17 | 3impa 1099 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧))) |
19 | 18 | rgen3 3124 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)) |
20 | ellnfn 29076 | . 2 ⊢ (( ℋ × {0}) ∈ LinFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (( ℋ × {0})‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (( ℋ × {0})‘𝑦)) + (( ℋ × {0})‘𝑧)))) | |
21 | 2, 19, 20 | mpbir2an 682 | 1 ⊢ ( ℋ × {0}) ∈ LinFn |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 {csn 4314 × cxp 5247 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ℂcc 10135 0cc0 10137 + caddc 10140 · cmul 10142 ℋchil 28110 +ℎ cva 28111 ·ℎ csm 28112 LinFnclf 28145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-hilex 28190 ax-hfvadd 28191 ax-hfvmul 28196 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 df-lnfn 29041 |
This theorem is referenced by: nmfn0 29180 lnfn0 29240 lnfnmul 29241 nmbdfnlb 29243 nmcfnex 29246 nmcfnlb 29247 lnfncon 29249 riesz4 29257 riesz1 29258 |
Copyright terms: Public domain | W3C validator |