MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lepnf Structured version   Visualization version   GIF version

Theorem 0lepnf 12179
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0lepnf 0 ≤ +∞

Proof of Theorem 0lepnf
StepHypRef Expression
1 0xr 10298 . 2 0 ∈ ℝ*
2 pnfge 12177 . 2 (0 ∈ ℝ* → 0 ≤ +∞)
31, 2ax-mp 5 1 0 ≤ +∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2139   class class class wbr 4804  0cc0 10148  +∞cpnf 10283  *cxr 10285  cle 10287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-cnv 5274  df-iota 6012  df-fv 6057  df-ov 6817  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292
This theorem is referenced by:  xnn0ge0  12180  nn0pnfge0OLD  12181  xsubge0  12304  xadddi2  12340  xnn0xrge0  12538  pcge0  15788  leordtval2  21238  iccpnfcnv  22964  taylfval  24332  elxrge02  29970  xrge0adddir  30022  xrge0iifcnv  30309  lmxrge0  30328  esumpinfval  30465  hashf2  30476  esumcvg  30478  pnfel0pnf  40275
  Copyright terms: Public domain W3C validator