![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0le2 | Structured version Visualization version GIF version |
Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
0le2 | ⊢ 0 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le1 10739 | . . 3 ⊢ 0 ≤ 1 | |
2 | 1re 10227 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | addge0i 10756 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
4 | 1, 1, 3 | mp2an 710 | . 2 ⊢ 0 ≤ (1 + 1) |
5 | df-2 11267 | . 2 ⊢ 2 = (1 + 1) | |
6 | 4, 5 | breqtrri 4827 | 1 ⊢ 0 ≤ 2 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4800 (class class class)co 6809 0cc0 10124 1c1 10125 + caddc 10127 ≤ cle 10263 2c2 11258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-po 5183 df-so 5184 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-2 11267 |
This theorem is referenced by: expubnd 13111 4bc2eq6 13306 sqrt4 14208 sqrt2gt1lt2 14210 sqreulem 14294 amgm2 14304 efcllem 15003 ege2le3 15015 cos2bnd 15113 evennn2n 15273 6gcd4e2 15453 isprm7 15618 efgredleme 18352 abvtrivd 19038 zringndrg 20036 iihalf1 22927 minveclem2 23393 sincos4thpi 24460 tan4thpi 24461 log2tlbnd 24867 ppisval 25025 bposlem1 25204 bposlem8 25211 bposlem9 25212 lgslem1 25217 m1lgs 25308 2lgslem1a1 25309 2lgslem4 25326 2sqlem11 25349 dchrisumlem3 25375 mulog2sumlem2 25419 log2sumbnd 25428 chpdifbndlem1 25437 usgr2pthlem 26865 pthdlem2 26870 ex-abs 27619 ipidsq 27870 minvecolem2 28036 normpar2i 28318 sqsscirc1 30259 nexple 30376 eulerpartlemgc 30729 knoppndvlem10 32814 knoppndvlem11 32815 knoppndvlem14 32818 pellexlem2 37892 imo72b2lem0 38963 sumnnodd 40361 0ellimcdiv 40380 stoweidlem26 40742 wallispilem4 40784 wallispi 40786 wallispi2lem1 40787 wallispi2 40789 stirlinglem1 40790 stirlinglem5 40794 stirlinglem6 40795 stirlinglem7 40796 stirlinglem11 40800 stirlinglem15 40804 fourierdlem68 40890 fouriersw 40947 smfmullem4 41503 lighneallem4a 42031 |
Copyright terms: Public domain | W3C validator |