![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version |
Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0in | ⊢ (∅ ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3838 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
2 | in0 4001 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | 1, 2 | eqtri 2673 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∩ cin 3606 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-in 3614 df-nul 3949 |
This theorem is referenced by: pred0 5748 fnsuppeq0 7368 setsfun 15940 setsfun0 15941 indistopon 20853 fctop 20856 cctop 20858 restsn 21022 filconn 21734 chtdif 24929 ppidif 24934 ppi1 24935 cht1 24936 ofpreima2 29594 ordtconnlem1 30098 measvuni 30405 measinb 30412 cndprobnul 30627 ballotlemfp1 30681 ballotlemgun 30714 chtvalz 30835 mrsubvrs 31545 mblfinlem2 33577 ntrkbimka 38653 limsup0 40244 subsalsal 40895 nnfoctbdjlem 40990 |
Copyright terms: Public domain | W3C validator |