![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ima | Structured version Visualization version GIF version |
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
Ref | Expression |
---|---|
0ima | ⊢ (∅ “ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5635 | . . 3 ⊢ (∅ “ 𝐴) ⊆ ran ∅ | |
2 | rn0 5532 | . . 3 ⊢ ran ∅ = ∅ | |
3 | 1, 2 | sseqtri 3778 | . 2 ⊢ (∅ “ 𝐴) ⊆ ∅ |
4 | 0ss 4115 | . 2 ⊢ ∅ ⊆ (∅ “ 𝐴) | |
5 | 3, 4 | eqssi 3760 | 1 ⊢ (∅ “ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∅c0 4058 ran crn 5267 “ cima 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 |
This theorem is referenced by: csbrn 5754 nghmfval 22727 isnghm 22728 mthmval 31779 ec0 34454 0he 38578 limsup0 40429 0cnf 40593 mbf0 40676 |
Copyright terms: Public domain | W3C validator |