Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0idl Structured version   Visualization version   GIF version

Theorem 0idl 34155
Description: The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
0idl.1 𝐺 = (1st𝑅)
0idl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
0idl (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))

Proof of Theorem 0idl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0idl.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2760 . . . 4 ran 𝐺 = ran 𝐺
3 0idl.2 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 34049 . . 3 (𝑅 ∈ RingOps → 𝑍 ∈ ran 𝐺)
54snssd 4485 . 2 (𝑅 ∈ RingOps → {𝑍} ⊆ ran 𝐺)
6 fvex 6363 . . . . 5 (GId‘𝐺) ∈ V
73, 6eqeltri 2835 . . . 4 𝑍 ∈ V
87snid 4353 . . 3 𝑍 ∈ {𝑍}
98a1i 11 . 2 (𝑅 ∈ RingOps → 𝑍 ∈ {𝑍})
10 velsn 4337 . . . 4 (𝑥 ∈ {𝑍} ↔ 𝑥 = 𝑍)
11 velsn 4337 . . . . . . . 8 (𝑦 ∈ {𝑍} ↔ 𝑦 = 𝑍)
121, 2, 3rngo0rid 34050 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
134, 12mpdan 705 . . . . . . . . . 10 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
14 ovex 6842 . . . . . . . . . . 11 (𝑍𝐺𝑍) ∈ V
1514elsn 4336 . . . . . . . . . 10 ((𝑍𝐺𝑍) ∈ {𝑍} ↔ (𝑍𝐺𝑍) = 𝑍)
1613, 15sylibr 224 . . . . . . . . 9 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) ∈ {𝑍})
17 oveq2 6822 . . . . . . . . . 10 (𝑦 = 𝑍 → (𝑍𝐺𝑦) = (𝑍𝐺𝑍))
1817eleq1d 2824 . . . . . . . . 9 (𝑦 = 𝑍 → ((𝑍𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑍) ∈ {𝑍}))
1916, 18syl5ibrcom 237 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑦 = 𝑍 → (𝑍𝐺𝑦) ∈ {𝑍}))
2011, 19syl5bi 232 . . . . . . 7 (𝑅 ∈ RingOps → (𝑦 ∈ {𝑍} → (𝑍𝐺𝑦) ∈ {𝑍}))
2120ralrimiv 3103 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍})
22 eqid 2760 . . . . . . . . . 10 (2nd𝑅) = (2nd𝑅)
233, 2, 1, 22rngorz 34053 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd𝑅)𝑍) = 𝑍)
24 ovex 6842 . . . . . . . . . 10 (𝑧(2nd𝑅)𝑍) ∈ V
2524elsn 4336 . . . . . . . . 9 ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ↔ (𝑧(2nd𝑅)𝑍) = 𝑍)
2623, 25sylibr 224 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd𝑅)𝑍) ∈ {𝑍})
273, 2, 1, 22rngolz 34052 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd𝑅)𝑧) = 𝑍)
28 ovex 6842 . . . . . . . . . 10 (𝑍(2nd𝑅)𝑧) ∈ V
2928elsn 4336 . . . . . . . . 9 ((𝑍(2nd𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd𝑅)𝑧) = 𝑍)
3027, 29sylibr 224 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd𝑅)𝑧) ∈ {𝑍})
3126, 30jca 555 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
3231ralrimiva 3104 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
3321, 32jca 555 . . . . 5 (𝑅 ∈ RingOps → (∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
34 oveq1 6821 . . . . . . . 8 (𝑥 = 𝑍 → (𝑥𝐺𝑦) = (𝑍𝐺𝑦))
3534eleq1d 2824 . . . . . . 7 (𝑥 = 𝑍 → ((𝑥𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑦) ∈ {𝑍}))
3635ralbidv 3124 . . . . . 6 (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ↔ ∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍}))
37 oveq2 6822 . . . . . . . . 9 (𝑥 = 𝑍 → (𝑧(2nd𝑅)𝑥) = (𝑧(2nd𝑅)𝑍))
3837eleq1d 2824 . . . . . . . 8 (𝑥 = 𝑍 → ((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ↔ (𝑧(2nd𝑅)𝑍) ∈ {𝑍}))
39 oveq1 6821 . . . . . . . . 9 (𝑥 = 𝑍 → (𝑥(2nd𝑅)𝑧) = (𝑍(2nd𝑅)𝑧))
4039eleq1d 2824 . . . . . . . 8 (𝑥 = 𝑍 → ((𝑥(2nd𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
4138, 40anbi12d 749 . . . . . . 7 (𝑥 = 𝑍 → (((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
4241ralbidv 3124 . . . . . 6 (𝑥 = 𝑍 → (∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}) ↔ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
4336, 42anbi12d 749 . . . . 5 (𝑥 = 𝑍 → ((∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})) ↔ (∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))))
4433, 43syl5ibrcom 237 . . . 4 (𝑅 ∈ RingOps → (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}))))
4510, 44syl5bi 232 . . 3 (𝑅 ∈ RingOps → (𝑥 ∈ {𝑍} → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}))))
4645ralrimiv 3103 . 2 (𝑅 ∈ RingOps → ∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})))
471, 22, 2, 3isidl 34144 . 2 (𝑅 ∈ RingOps → ({𝑍} ∈ (Idl‘𝑅) ↔ ({𝑍} ⊆ ran 𝐺𝑍 ∈ {𝑍} ∧ ∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})))))
485, 9, 46, 47mpbir3and 1428 1 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  wss 3715  {csn 4321  ran crn 5267  cfv 6049  (class class class)co 6814  1st c1st 7332  2nd c2nd 7333  GIdcgi 27674  RingOpscrngo 34024  Idlcidl 34137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-1st 7334  df-2nd 7335  df-grpo 27677  df-gid 27678  df-ginv 27679  df-ablo 27729  df-rngo 34025  df-idl 34140
This theorem is referenced by:  0rngo  34157  divrngidl  34158  smprngopr  34182  isdmn3  34204
  Copyright terms: Public domain W3C validator