![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version |
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
Ref | Expression |
---|---|
0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4107 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
2 | dm0 5486 | . . . . 5 ⊢ dom ∅ = ∅ | |
3 | 2 | reseq2i 5540 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
4 | res0 5547 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
5 | 3, 4 | eqtr2i 2775 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
6 | 0ss 4107 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
7 | 1, 5, 6 | 3pm3.2i 1421 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
8 | 0ex 4934 | . . 3 ⊢ ∅ ∈ V | |
9 | vtxval0 26122 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
10 | 9 | eqcomi 2761 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
11 | eqid 2752 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
12 | iedgval0 26123 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
13 | 12 | eqcomi 2761 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
14 | eqid 2752 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | edgval 26132 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
16 | 12 | rneqi 5499 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
17 | rn0 5524 | . . . . 5 ⊢ ran ∅ = ∅ | |
18 | 15, 16, 17 | 3eqtrri 2779 | . . . 4 ⊢ ∅ = (Edg‘∅) |
19 | 10, 11, 13, 14, 18 | issubgr 26354 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
20 | 8, 19 | mpan2 709 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
21 | 7, 20 | mpbiri 248 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ⊆ wss 3707 ∅c0 4050 𝒫 cpw 4294 class class class wbr 4796 dom cdm 5258 ran crn 5259 ↾ cres 5260 ‘cfv 6041 Vtxcvtx 26065 iEdgciedg 26066 Edgcedg 26130 SubGraph csubgr 26350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-iota 6004 df-fun 6043 df-fv 6049 df-slot 16055 df-base 16057 df-edgf 26059 df-vtx 26067 df-iedg 26068 df-edg 26131 df-subgr 26351 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |