![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0g0 | Structured version Visualization version GIF version |
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
Ref | Expression |
---|---|
0g0 | ⊢ ∅ = (0g‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | base0 15959 | . . 3 ⊢ ∅ = (Base‘∅) | |
2 | eqid 2651 | . . 3 ⊢ (+g‘∅) = (+g‘∅) | |
3 | eqid 2651 | . . 3 ⊢ (0g‘∅) = (0g‘∅) | |
4 | 1, 2, 3 | grpidval 17307 | . 2 ⊢ (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) |
5 | noel 3952 | . . . . . 6 ⊢ ¬ 𝑒 ∈ ∅ | |
6 | 5 | intnanr 981 | . . . . 5 ⊢ ¬ (𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) |
7 | 6 | nex 1771 | . . . 4 ⊢ ¬ ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) |
8 | euex 2522 | . . . 4 ⊢ (∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) | |
9 | 7, 8 | mto 188 | . . 3 ⊢ ¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) |
10 | iotanul 5904 | . . 3 ⊢ (¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅ |
12 | 4, 11 | eqtr2i 2674 | 1 ⊢ ∅ = (0g‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∃!weu 2498 ∀wral 2941 ∅c0 3948 ℩cio 5887 ‘cfv 5926 (class class class)co 6690 +gcplusg 15988 0gc0g 16147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-slot 15908 df-base 15910 df-0g 16149 |
This theorem is referenced by: frmd0 17444 ringidval 18549 |
Copyright terms: Public domain | W3C validator |