![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3952 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | dm0 5371 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | eleq2i 2722 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
4 | 1, 3 | mtbir 312 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
5 | ndmfv 6256 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∈ wcel 2030 ∅c0 3948 dom cdm 5143 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 ax-pow 4873 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-dm 5153 df-iota 5889 df-fv 5934 |
This theorem is referenced by: fv2prc 6266 csbfv12 6269 0ov 6722 csbov123 6727 csbov 6728 elovmpt3imp 6932 bropopvvv 7300 bropfvvvvlem 7301 itunisuc 9279 itunitc1 9280 ccat1st1st 13448 str0 15958 ressbas 15977 cntrval 17798 cntzval 17800 cntzrcl 17806 sralem 19225 srasca 19229 sravsca 19230 sraip 19231 rlmval 19239 opsrle 19523 opsrbaslem 19525 opsrbaslemOLD 19526 mpfrcl 19566 evlval 19572 psr1val 19604 vr1val 19610 chrval 19921 ocvval 20059 elocv 20060 iscnp2 21091 resvsca 29958 mrsubfval 31531 msubfval 31547 poimirlem28 33567 0cnv 40292 |
Copyright terms: Public domain | W3C validator |